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I. Introduction

This document presents the complete equations for the Unified Flexible
Spacecraft Simulation (UFSS) Program developed by TRW Systems for the NASA/MSFC
under Contract NAS 8-26131. This general purpose simulation program is
based on an algorithm which utilizes the digital computer to synthesize
the dynamic and kinematic equations for a topological tree configuration of
N interconnected bodies (the interconnected system of bodies forms no
closed loops), the terminal members of which may be flexible. (For illus-
trative purposes, Figure 2.1 depicts such a spacecraft model (N=15) where
the possible flexible bodies are shaded.) Necessary input quantities to the
dynamics subroutine include the mass and inertia properties of each body
and the flexible characteristics of each terminal member in addition to the
specification, for each body, of those bodies to which it connects. This
latter description involves the specification of the number of rotational
degrees of freedom at each interconnection along with the associated position
vectors defining these connections relative to the mass centers of the bodies
involved. These position vectors can be input as time-varying functions
if desired, thus affording the capability of studying the effects of time-
varying hinge locations. Springs and dampers are assumed to act at each
interconnection and structural damping in the flexible terminal members

is included in the form of equivalent viscous damping. -

Figure 1.1 praesents the major subroutines of the UFSS program. The
Dynamics Subroutine is tﬁe subject of Sections III, IV and V of this report.
The Disturbance Subroutine is documented in Section VI; the Orbit Subroutine
is documented in Section VII; the Control Interface Subroutine is documented

in Section VIII.

[Note that although no control laws are implemented at this time, this inter-
face routine provides for the future addition of any specific or generalized

control subroutines.]

Finally, the Modal Subroutine is documeted in Section IX with a list of
symbols given in Section X. Appendix A details the derivation of the dynamic
equations, while Appendix B contains the .derivation of the flexible distur-

bances.
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Description of the System Model and Notation
Consider the case of a multibodied flexible spacecraft modeled as a system

1I.
of N bodies interconnected in a topological tree configuration such that
Figure 2.1 below exhibits such a

only the terminal bodies may be flexible.
configuration where N=15 and the possible flexible bodies are shaded.
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Figure 2.1 Spacecraft Model in a Topological Tree Configuration.

This figure also exemplifies the method by which the user numerically

identifies the individual bodies.



2.1 Topological Tree Model Specification

In particular, whenever a physical system 1s modeled as in Figure 2.1,
it is possible to identify a specific body whose attitude relative to some
external reference coordinate set is of prime interest; this is usually
that portion of the spacecraft housing the payload and this particular body
will be denoted as Body 1 of the system. [An example of a possible external
reference coordinate set for this program is a set located on a user defined

Kepler orbit such as specified in Section VII.]

The remaining bodies are labeled in numerical sequence in a fashion
which denotes the minimum number of interconnections that must be crossed
in traversinga path from the specific body back to Body 1. The number of
connecting points crossed is defined to be the level of the body. (Thus,

there is a unique body having level zero, and this is Body 1.)

In general, if Body m is connected to Body n and the level of Body m
is greater than that of Body n, then -Body m is defined to be a branch of
Body n and Body n is defined to be the 1limb of Body m. A sub-branch of
Body n is any member of higher level than that of Body n for which the latter

forms a link in the chain connecting the member to Body 1.

The rule for numbering the individual bodies in the topological tree

configuration is simply that:

m 2 n implies that the level of Body m > the level of Body n

Figure 2.1 clearly illustrates this labeling scheme. There are three
level one bodies (2, 3, 4), four level two bodies (5, 6, 7, 8), three
level three bodies (9, 10, 11) and four level four bodies (12, 13, 14, 15).

From Figure 2.1, the limb-branch relationships given in Table 2.1
are determined. These relationships, along with the specification of each
body as flexible or rigid plus the rigid-body and flexible degrees of freedom

for each body, constitute input to the computer program.



Table 2.1. Configurational Input Relationships for Figure 2.1

Type of Rigid-Body Flexible
Branch Limb Body Degrees of Freedom'(pj) Degrees of Freedom (?11

Body 1 0 R 6 0
2 1 R 2 0

3 1 R 1 0

4 1 R 3 0

5 2 R 3 0

6 3 F 0 3

7 4 R 1 0

8 4 R 2 0

9 5 R 1 0

10 6 F 3 5
11 8 R 3 0
12 10 F 1 4
13 10 F 2 0
14 11 F 1 4
15 11 F 3 4

It should be noted in Table 2.1 that Body 13 is entered as a flexible body
with zero flexible degrees of freedom. This case is allowed to cover the
option of omstraining all flexible degrees of freedom for a given flexible

body for preliminary analyses.

2.2 Definition of Coordinate Systems and Baslic Vector Quantities

Figure 2.2 depicts a multibodied flexible spacecraft systém modeled
as a topological tree configuration of bodies traveling through space in the
,vicinity'of an attracting body. In most cases, motion of the configuration
is expressed with respect to an orbital reference axis frame although this
is not mandatory and the reference axis frame may be arbitrarily specified

if so desired.



Several right-handed, orthogonal coordinate frames are used extensively
in the following development. The pertinent axis sets are described below,
the inertial reference frame being given with respect to the earth as the

orbited body.

X_ 5 e (e=1,2,3) — Coordinates and unit vectors of the inertially
fixed coordinate system with origin Oe at

the earth's center. gi and 92 lie in the

equatorial plane with 9; normal to this

plane and pointing northward; g§ is directed

along the autumnal equinox.

Xy 3 &4 (a=1,2,3) — Coordinates and unit vectors of the moving
reference coordinate frame. If the reference
frame is an orbital one(Section VIII), then
its origin Or lies on the user defined

Kepler orbit with gr and gr lying in the

1 3

T
orbit plane and e, normal to it. e,
toward the earth's center and gi forms an

acute angle with the orbital tangential velocity

points

vector.

R =R e — 5 Position vector of the reference coordinate
center O with respect to the earth's center

o .
e

R" =R, e —————> Position vector of Body 1 mass center 0l

with respect to the reference coordinate center

o_ .
r

[Note: repeated subscripts here and throughout this document denote summation

over the range of the repéated subscript; i.e., Ré g; = Ri gi + R; gg
1t
+
Ry &3]
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Figure 2.2. Details of Inertial and Orbital Reference Axis Frames



In what follows, vector quantities will be expressed in tensor (or
indical notation) form simplv by denoting the components. Thus
R* — RS .
o
In addition, an "outer product' matrix is formed from a given vector

as follows:

_J 1

0 wy W

I R J _J

waB w3 0 wy
_J ]

wy wy 94

so that, transforming from vector to index notation,

f x é = E

ag B¢

Figure 2.3 presents a schematic of a terminal flexible body (Body i)
and its limb (Body i). The following coordinate frames and vector quantities
can now be defined:

k k

X 3 (0=1,2,3) — Coordinates and unit vectors of an axis frame

fixed to Body k. If Body k is rigid, then the

e
-a

origin of this frame 0k is located at 1ts

mass center. If Body k is a terminal flexible

member, then O is located at the connecting

k
point of Body k with its limb.

‘

ko
B

X 3 E:o (B=1,2{3)? Coordinates and unit vectors of an axis frame with
fixed orientation relative to the limb of Body k.
The 6rigin of this frame is coincident with Ok'
Normally this frame is used to define some nominal
orientation of Body k relative to its limb with the

attitude variables of Body k defining the orientation
ko

of the XE relative to the xB
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= w e — Angular velocity vector of the reference frame.

o =0
o = wi gi —— Angular veloclty vector of the xi frame
=k k r -
R = Ra e, Position vector of 0k with respect to 0r .

Position vector from the Body i mass center to

its connection with Body 3.

3.

vector from the connecting point to an arbitrary

= r° e° —— For Body j a flexible body, r-  1is the position

mass point in Body j when the body is undeformed.

The various coordinate frames are related through direction cosine

matrices as follows:

4 - alle o

T e e

N T R %
where

SR

e T n %

S T %%

All adjacent bodies are assumed to be connected through a gimbal
hinge (see Section IV 1) with gimbal angular rotations expressed by the

coordinates



ei (0=1,2,3) =  the gimbal rotations defining the orientation of the
3

X frame with respect to the xé° frame.

In addition, once bodies have been combined, the following column

matrix is used in the sequel:

G;j for Body } a branch of Body i, this column matrix has a

rotational component for every flexible and rotational degree

of freedom of Body i's branches and sub-branches numbered > j

When a terminal body, say Body j, is deformed, the position vector
. _ 3 3

Pl = Py &y of an arbitrary mass point in the body is given by (see Figure 2.3)
A CENE B B LR
where ;J is the position vector of the mass point when Body j is undeformed.
In this program, Gj is assumed to be representable as a finite sum of
vector field functions (orthdgonal functions) with time-varying coefficients:
3
=3 (33 - i 3
u’ (r’, t) u ey
. &1
nj
’Zj =3 =3
a4y (t) % ()
=1
n

)

3 ' |
HECRS S

a=1
where
Ei (;j) = the &th orthogonal function describing spatial variation of Gj '
qi (t) = generalized coordinate describing the time variation of Gj-
nj = number of terms in the series expansion.

10



III. Synthesis of the Dynamic Equations

Attention will now be focused upon the detailed description of the
algorithm utilized by the computer to generate the system dynamic and kine-

matic equations. The state vector is taken to consist of the scalar elements

ir 1 1 .1 3 ‘5 3 “j
AGB ’ 'wa ] Ra ’ Rd ’ eY ] eY ’ qk ] qk
where

a, 8= 1,2,3

’-.u,N

(379
it

k= 0,1,...,n
h|

Yy = O,l.u-,pj

with nj being the number of flexible degrees of freedom of Body j and
pj being the number of rigid-body degrees of freedom of Body j with respect

to its limb (nj and pj may be zero).

The inductive algorithm used to synthesize the dynamic equations
for a spacecraft modeled as in Figure 2.1 is based upon an operation which,
given the dynamic equations for two separate systems, generates the dynamic
equations when the two systems are coupled together. Specifically, suppose
the dynamic equations are known for both Systems A and B in Figure 3.1,
and that System C is a combination of these two through an r (0<rs 3
degree of rotational freedom interconnection. (Note that only the shaded

bodies in Systems A, B and C may be flexible.)

11



Figure 3.1.

Combining Two Systems to Form a Third

The algorithm providing the dynamic equations for the combined

System C is termed the Combining Unit and can be represented schematically

by a two-input -— one-output device as pictured in Figure 3.2.

System A
Dynamic Equations

System B
Dynamic Equations

Figure 3.2.

Combining
Unit

Schematic of the Combining Unit

System C
Dynamic Equations

The actual combining operation is accomplished by eliminating from the

dynamical equations the forces and torques of constraint between the Systems A

and B. When applied to an actual spacecraft modeled as in Figure 2.1,

this Combining Unit is utilized repetitively to synthesize the dynamic

equations through appropriate interpretations of the Systems A, B and C.

12



Thus, there are two elementary components in the synthesizing

algorithm: first; the Combining Unit and second, the Sequencing Algorithm

which specifies the appropriate Systems A, B and C at each application
of the Combining Unit.

Let us first consider the latter component.

3.1 The Sequencing Algorithm

In order to specify the sequence of combining operations, one need
merely list for each branch its corresponding limb and the number of
interconnecting rotational degrees of freedom. Once this information is
supplied, a computer algorithm determines the sequence of combining operations

necessary to synthesize the system equationms.

For example, consider the configuration shown in Figure 2.1. From
the input information supplied in Table 2.1, the Sequencing Algorithm determines
the step by step procedure outlined in Table 3.1 below, defining the Systems
A, B and C at every application of the Combining Unit.

Assuming that the lowest level body in System A has a level greater
than that of the lowest level body in System B, the deveiopment initiates
at the highest numbered body (15) and considers the interconnection with
its 1limb (11).

%
see Section III.2

13



Thus, upon the first pass through the Combining Unit, the generated
equations of motion (C) apply to the two-body system 15-11, where the
constraint forces and torques between these two bodies have been eliminated
and the torques along degree of freedom axes are specified by other routines
of the simulation, such as the control system subroutine. In a similar way,
the second pass combines body 14 with the system 15-11 to form the-three
body result 15-14-11. This technique is now successively repeated until,
after the l4th pass, the complete equations of motion (i.e., the second
derivative of the state vector components) reside in C and are ready for
the computer's integration package.. This sequence of operations is retained

by the computer and applied, at each integration step, to form the dynamic

equations.
Table 3.1. Synthesis of Dynamic Equations
for System of Figure 2.1
Use No. System A System B System C- Input Parameters
Required for Body
1 15 11 15-11 15,11
2 14 c 15-14~11 14
3 c 8 15-14-11-8 8
4 c 4 15-14-11-8~4 4
5 7 c 15-14-11-8-7-4 7
6 C 1 15-14-11-8-7-4-1 1
Store C in Cl1 - - -
7 13 10 13-10 13,10
8 12 c 13-12-10 12
9 C 6 13-12-10-6 6
10 c 3 13-12-10-6-3 3
11 c Cl 13-12-10-6-3-15- - - -
14-11-8-7-4-1
Store C in Cl1
12 9 5 9-5 9,5
13 c 2 9-5-2 2
14 c Cl 15 through 1 - - -
C now h?uses the sysfem dynamic equatiogf

14



Determination of the new translationmal and rotational positions is
a considerably simpler task as it is merely necessary to integrate directly
the rate variables already present in the state vector. This procedure
applies to all but the body 1 rotations for which the attitude direction
cosines are desired. These can be obtained by integrating the conventional

direction cosine equations as will be demonstrated later. [see (4-52)]

When defining the Combining Unit in the following section, it is -
convenient to identify a system by specifying the lowest leveled body and
its lowest numbered branch. As shown in Figure 3.3, let Body j of Level
(N+1) be the lowest leveled body of System A [here, N is arbitrary and
does not refer td the total number of bodies in the configuration] and let
Body s of Level (N+2) be the lowest numbered branch of Body j. Let Body i
of Level N be the lowest leveled body of System B and Body & of Level (N+1)
be the lowest numbered branch of Body i. [Note that because the sequencing
algorithm commences with the highest numbered bodies, it is true that j{z.]
Following the combining process, Body j becomes the lowest numbered branch
of Body i and the entife combined system is designated System C. Thus,

system identification is as follows:

System A = System js
System B e——mm—p System 18
System ( =—————— System 1j

3.2 The Combining Unit

As exemplified in Table 3.1, the Combining Unit is utilized repetitively
to synthesize the dynamic equations for a combined System C giveh the dynamic
eqﬁations for its components, Systems A and B. In this program, the dynamic
equations for the rigid bodies of the system are the standard Euler equatioms
while the dynamic equations for the terminal flexible bodies are obtained
via a Lagrangian approach. Because of dissimilarities in the forms of

the equations for the flexible and rigid bodies, two distinct combining

15



System B
(System ig)

System A
(System js)

System C
(System 1j)

Figure 3.3. The Combining Process for Two Systems of Bodies
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‘algorithms are utilized in the Combining Unit. Choice of the proper combining
algorithm depends on whéther or not System A is a single flexible body in
a given combining operation (see Figure 3.4 where the Combining Unit is

4
represented by the blocks contained within the dashed lines).

The following section contains details of the Rigid Combining Algorithm
used when System A is not a single flexible body; Section V defines the
Flexible Combining Algorithm used when System A is a single flexible body.

Derivations of the governing equations are contained in Appendix C.

: %
Iv. Rigid Combining Algorithm Specification

Assume that System A in a given combining operation (Use No. in
Table 3.1) is not a single flexible body. In this case, the Rigid Combining
Algorithm is utilized to synthesize the equations for System C given those
for Systems A and B. Prior to the first pass through this algorithm, it
is necessary to compute certain auxiliary variables that are not elements
of the dynamic state vector, but that can be algebraically determined
from this vector. [In addition to the auxiliary variables specified in the
following section, the gimbal torques and certain quantities associated
with the flexible bodies should be computed at the same time. These quantities

are specified in Sections 4.4, 5.1 and 5.3.]

4.1 The Auxiliary Variables

Specifically, it is desirable to compute and store for all bodies j

L . Rj s RJ  and wJ
B a o o

Using the notation of Section 2.2 and supposing Body 1 to be the
limb of Body j, it follows that

the scalar components of Ai

ji o ,dot

A = A A°© (4.1
aB ay  TvB ' (4.1)
where A$§1 is the input transformation from the Body i axes to the

nominal dey j axes. Let us first consider the transformation matrix Agg° .
Aggo can be obtained by three successive Euler rotations eg (a=1,2,3), satis-

fying the constraints of a gimballed hinge, such that

5 —
this algorithm originally developed in Reference 3.

17



System A System B
Equations Equations

no System A yes
is a Single Flexible Body

Y Y

Rigid Combining Algorithm Flexible Combining Algorith

System C
Equations

Figure 3.4. Elements of the Combining Unit
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RER

af
where
1
j1
G68
L
[
cos eg
iz _
GY6 = 0
sin eg
L
-
cos eg
i3 _ L ]
GaY sin 63
0

Rotational constraints in Equations (4-3) to (4-5) are handled by setting
the pertinent 9i identically equal to zero, with the condition that first
e% is constrained, then 69 and finally, o3

2

In a similar. fashion,

Jol
AaB

Gj°3 Gjoz

i3 32 .31
GaY Gys GGB

sin ej 0

cos Bj 0

1

ay v$

19

jol
58

if necessary.

(4-2)

(4-3)

(4=

(4-5)

(4-6)



where the Ggs are identical to the GgY defined by Equations (4-3)

to (4-5) with ei replaced by 630 (0=1,2,3). The 930 are input parameters.
In most instances the 830 will be constants; only when generalized relative
displacement between Body j and Body i is desired will it be necessary to

input the Oio as time-dependent quantities and in these instances the 6j° (t)

and ZlJ (t) must be consistently prescribed.

Angular velocities are determined through the relation

-]

i _ jio Jo j+ a3 -
W AaB Wy + GaB GB (4-7)
where
’ J J J |
(cos 63 cos 62) (sin 63) Q
i 2 i gd ] J -
GaB €sin 63 cos 92)‘ (cos 93) 0 (4-8)
(sin 63) 0 1
and
Gi; = Gis with those columns removed which imply no degree of

freedom; i.e., if Gj = 0, then the oth column of

]
GGY is deleted in formlng G<SY R (4-8a)

with those rows deleted which imply no degree

0 e

.0
while 63 is equal to §

of freedom. Thus, if e% has two degrees of fraeedom, then wi is given by

3 3y rarn ab| (23

(cos 63 cos 62) (sin 63) el

i o~ 433 j s oo h| k| 2]

ws AaBO wB° + |€sin 63 cos 62) (cos 63) 62
(sin 6%) ©)

*
(4-7) is not coded. The proper expression is (4-10).

20



In case the eiO (0=1,2,3) are constant, Equation (4-7) becomes

jo_ ,Ji i i+ a3
wa = AaB we + GaB 68

In the general case where the Bio are time-dependent input functions,

Equation (4-7) becomes

j i i+ 41° o glo #
= + + ° 9 0
wy Al W3 Gyp O3 AQY Y8 eB
where Gig is defined similarly to GiB with 8&0 replacing ei . (There
is no need to define a Gig+ since it is sufficient to set éio = 0

for any component Gio which is constant.)
i
8

vector and the input parameters eio (0=1,2,3). Adopting a procedure

It is evident that A; can be computed directly from the state

whereby the auxiliary variables associated with bodies of lower level

are computed first, it can be assumed that Ai'r is already known. A;Z

af

then follows simply from the relation

jr ji ir
A = A .
aB AaY Y8

To complete the description of the auxiliary variables,

-
Ro= R+ AiZ(T) 1l - Al !
SRS R A e BES A
+ ;Aig(T) ;éy - ;zs Aé;(T)g'zij

_ ) dr(my 3 tr 3r(T) {34
2Aa6 wBY wuB ABY' fly

21

(4-9)

(4-10)

(4-11)

(4-11.1)

(4-12)

(4-13)



where the super-dot above a variable denotes time differemtiation in the
designated axis frame. In the above fashion, the auxiliary dynamic variables
for all bodies can be obtained. It is merely necessary to consider them

in the proper numerical sequence beginning with Body 1.

4.2 The Rigid Combining Algorithm

Suppose that System A has Body j as its member of lowest level,
System B has Body i as its member of lowest level (i<j) and that A is
to be connected to B to yield C as in Figure 3.3. Referring to this figure,
it is also assumed that Body % is the lowest numbered branch of Body i in

System B, s 1is the lowest numbered branch of Body j, and j<& .

The dynamic equations for System A are as follows:

System A
[ All _Al12 A13~ [ .ic] B lq
~js A
By Big Byg oy C
A21 _A22 A23 3 _ A2
Bt Bag  Bag “s Co
A31 _A32 _A33 g A3
Bal BaB BaB RB Ca
Here, BA22 s BA23 s BA32 and BA33 are 3 x 3 matrices with the indices
af oB oB .aB A2 A3
o and, B running from 1 to 3; C and C are 3 x 1 matrices;
if ejs has M components, then BAll is M x M, BA12 and BAl3
2 A21 A3l ki Al k8 kg
are M x 3, Bal and Bal are 3 x M while Ck' is M x 1.

System B has a similar description and interpretation.

System B
[ B11 _B12 _B13| [ vig] | B1
B B B 0 c .
mn mB mB n m
B21 B22 B23 o1 _ B2
Ban Bue BaB wa = Ca
BB31 BB32 BB33 R1 CB3
an of af B | o]

22
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Finally, the output of the Rigid Combining Algorithm has a similar appearance.

System C

— — r:} -
BCll BC12 BC13 gij cCl
Pq pB pB q p
c21 Cc22 C23 oi Cc2
= -16
Baq Byg  Bag wy Co (4-16)
BC3l BC32 BCBB gi CC3
oaq oB af B o
- A L J L
where
512
n
ol . { gis 4-17
. o) (4-17)
o]
Y

with the column matrix 'ei including only the degree-of-freedom components

at the interconnection of Bodies i and j.

To complete the description of the Rigid Combining Algorithm, it
is now necessary only to explicitly specify the elements of the matricas
BC and CC and to show how this inductive process can be initiated at

the bodies of highest level by direct use of the computer input data.

gB11 0 0
mn
cl1 All 1
By = |0 By Pley (4-18)
2 3
0 Py P
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CBl
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c1L 13
Cp = Pk
P14
o
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C2 B2 9 16 11 17 FJ1i(T) A2
= + P - P + o +
Ca Ca ’ PaB ] PGB B AGB B
CC3 = CB3 - P12 P17 + Aji(T) CA3 _ BA33 P16
a a af B af B8 BY Y
1 18 R
The P to P are defined as follows:
kB aB
1 - Al2 Al3 19 i+
PkB Bka + Bky Pya Gae
where
19 Jr(T) i
P = A
BY BS QGY
2]
2 _ A21 T3l A3
Pal ;Bal zaB B821

where the superscript 0 denotes removal of the dth row of the associated

quantity if ei z 0.

3 _f,20 3
Pl ;PQB qu

where the superscript O has the same meaning as above and

p20 _ gA22 . LA23 19 o4i }pA32

aB of ay Y8 Tay | YB

4 ) _A12 Al3 19 ( i A13
PkB B 3Bku + Bky Pyaz AaB * Bka
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where

P2 - v 3323 ‘ (4-37)

- %piég (4-38)
SRR Ay

5 -

PZY = - Apig 3233 - Ag;(T) 3233 (4-41)
2

P = Piz Bf?gz * Aii(T) 3322- - PzY Pig (4-43)

P2 - DI, g gl (4t

Pllf = cﬁl —%Bﬁiz + 3323 P;E:Py - Bﬁ? P'é6 (4-45)
R R A I R R R BT
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where the superscript

those components of T

is again applied as before, meaning that only

along degree-of-freedom axes are pertinent
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This completes the definition of the Rigid Combining Algorithm.
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(4-47)
(4-48)
0
0 (4-49)
0
= 0,
o]
(4-50)
(4-51)

The kinematic equations for Body i (i22), that is, a determination

at time ¢t

are already elements of the dynamic state vector.

of its attitude rates, is already known since terms such as

g
83

For Body 1, a direction

cosine approach is desired and the kinematic equations are as follows:
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«1r _ 1 Alr Alr r

A, = +

a8 Yoy Sy ay  “y8

The above relations were coded in the initial UFSS Program. However,

a much more efficient calculation of Ai;

"Euler parameter" technique as follows.

Utilizing (4-532), it follows that

el el "1
AaB Auy wYB .
The initial orientation for Azé is obtained from

el er rl
Aug (£)) = AL (e ) A ()

The matrix AZl can be written in terms of Ai;(to

B

‘matrix Cae , a function of time as follows

el - el
AaB(t) = Aay(to) CYB(t)

so that CYB(t). also satisfies the same differential equation as A

. ~1

C = (C . .
aB ay ““yB

Instead of solving the above matrix differential equation, C

can be expressed in terms of the four Euler parameters consisting of a scaler

is realized by utilizing an

), a constant, and a

b

el
of

af

¥ and a vector Ky resulting in four scalar differential equations to be

integrated.

To introduce the Euler parameters, note that

any orilentation of

a body may be achieved by a counterclockwise rotation about an appropriate

unit vector e, through an angle 6 . Accordingly, 'Cae has the repre-
gentation
CuB = 608 + sin @ €8 + (1 - cos 6) aay eYB .
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The Euler pafameters are defined in terms of e, and 06 by

cos (6/2)

=
1l

.
[}

sin (8/2) e, -

Then

-~ ~

CaB = GaB + 2 x KGB + 2 KaY KYB

The differential equation for CaB leads to corresponding differential

equations for ¥ and Ky o namely

- 1/2

bad
§

0)1 CT) K
o o

1 ~1
a 1/2 X(Fa - waB KB)
(T)

By definition, xz + Ku Ky is equal to one and indeed this function is

an integral of (4-52-c). This fact is used to provide a check on the com-

Fad
1]

putation through calculation of

A = |1 - xz + KiT) Kal

As seen from (4-52-a), the initial value of Ca is the identity matrix.

B
Thus, from (4-52-b), initial conditions for (4-52-c) are

x(to) = 1 ;5 Ka(to) = 0

Finally, the equations (4-52-c) and (4-52-e) are solved for y(t) and KaCtl
with (4-52-b) subsequently used to obtain CaBCt) . From (4-52-a)

le;,  _ (T) le
AaB(t) Cay (t) AYB(to)
le _ 1r re . 1r
Thus, since AaB = Aay AYB , AaB is obtained from
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lr,.y (T) ,, 1r re re(T), h—52—f
Aaﬁ@:l = Cuy (t). AYo(to) Acp(t_o) Ag (£). ( )

It now remains to detail the initialization of the inductive process.

4.3 Initialization of the Rigid Combining Algorithm

When one of the inputs to the Rigid Combining Algorithm is a single
rigid body (say Body k is the System A), then the matrices BA and CA

are initialized as follows:

A22 k

BaB IaB (4-53)
A33 _  k ,kr _

BaB = m AaB (4-54)
A23  _  _A32 _ _

BaB = BaB = 0 (4~54.1)

All the remaining sub-matrices of BA are void. In addition,

Al

Ca is void (4-55)
A2 _ "k ok ok ke )
Ca = maY IyG ws + Tu (4-56)
A3 _ _ k kr[, 't sk _ ir “r °r k]
Cu = m AaY [2 mYﬁ S +(wY6 + wYB wBS) R6
(4-57)
+ Fee
o

" 1f Body k is, instead, a single rigid body treated as a limb (System B),
then the above specified sub-matrices of BA and CA define the sub-
matrices of BB and CB . In either event, the Rigid Combining Algorithm
can be readily initialized in its inductive procedure of synthesizing the

. . e .
system dynamic equations. For specification of Tz and er , see Section 6.1.
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4.4 Specification of the Torque Tii (needed in (4-46))

o

o

Body i, are assumed to take place about a gimballed hinge nominally aligned
jo _jJo _jo

(%175 %37 %370,

are functions of the reaction torques at these gimbal axes.

Specifically, let Tih s Tgh s Tgh
B g

1° X5 xg gimbal axes of Body j.

gimbal torques may be arranged in a 3 x 1 column matrix such that

" The relative rotations of Body j with respect to its limb,

with the axis frame The components of the torque Tii

be the gimbal hinge reaction

torques about the x These three

ih
I

Tjh _ Tjh
o 2

ih
T3

jh

5 are not orthogonal components of a resultant

where the elements of T

torque vector.

It can readily be shown that the torque components of the total
gimbal reaction torque, transmitted from Body i to Body j, defined in

Body j coordinates are given by

-1
1o [j(T)] jh
Ta G af TB
where
b h| hi
cos 63 . j sin 62 cos 63
———? gin 93 - ]
cos 92 cos 62
: -1 sin Qj X sin Gj sin o4
[GJ<'T):| af = ——-—-——-——?l— cos 6% 2 E 3
cos 92 cos 92
0 0] 1
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(It is assumed that the gimbal rotations are such that 0 < eg < w/2
80 that cos 93 #0.)

The gimbal torques about the gimbal axes of Body j are

th o pds i pim (4-61)
o o a o
where
s _ L3V 3 _ i 32 | L33 L3
Ta KaB eB KaB eB KaB eB

are the spring rastraint torques,

ja _ _ Ad1 i3 j2 232 33 233
Ta CaB eB CaB 68 CaB eB

are the damping torgques and

Tim is the array containing the motor torques about the
gimbal axes of Body j in case Body j is a controlled
body. '

In the above relations,

Ei“ 0 o-
RS = o Wt o
oo k%‘:
where kin s kgn s kgn are the spring constants associated with the x% ,
Xg , xg gimbal axes of Body j in units of FL/(rad)n H
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cin 0 0
jn _ .
CaB 0 an 0
2
L? 0 an

where cin, cgn, cgn are the damping constants associated with the x% s
x% , x% gimbal axes of Body j in units of FL/(rad/T)n . In addition,

the following notational convenience is utilized:

j\n
(el)
n .
93 = (e%)n .
j\n

The body j control motor torques Tim are computed in the control

routines.

V. Flexible Combining Algorithm Specification

Consider now the case where System A in a given combining operation
is a single flexible body. 1In this case, the Flexible Combining Algorithm
is utilized to synthesize the dyhamic equations for System C given those
for Systems A and B as shown in Figure 5.1. Prior to the first pass through

this algorithm, the following quantities are computed.

5.1 Auxiliary Flexible Quantities

The following quantities are computed for each flexible body

at the time the auxiliary variables are calculated:

jl SO (|
W % Zkea
j2 R
a % Zkga
i3 S B |
Ha qk Qka
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.

Figure 5.1. Use of the Flexible Combining Algorithm
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B - a) e, | (5-4)
“ﬂis - q Eilas (5-5)
Hii = 9 Tt C Hii | | (5-6)
B - & 4 g, (5-7)
SR T (5-8)
Hiz = & q) Bl - a Hiza (5-9)
Hiéo ) qi qi Eizuﬁ = qﬂ Hﬂie (5-10)
Hgél = qi Nias (5-11)
Hiéz - éi NiaB (5-12)
In all the above quantities,
a, = 1,2,3
k,2 = »l,Z,...,nj

J
The arrays kfa * "ka ’ Eklus 208

Subroutine and will be defined in Section IX.

Zj ¢j and N3 are obtained from the Mass Properties

5.2 fThe Flexible Combining Algorithm

The Flexible Combining Algorithm is used only when System A in a
given combining operation is a single flexible body, call it Body j. Once
again, assume that System B has Body i as its member of lowest level (i<j)
and that System A is to be connected to System B to yield System C as in
Figure 5.1. Referring to this figure, it is also assumed that Body & is the
lowest numbered branch of Body i in System B and that j<f& .
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The dynamic equations for System B will be specified first since
they are identical to the System B equations for the Rigid Combining Algorithm.

Once again, BB22 s

af

indices «a

matrices; if 912
B12

r Xxr, BmB and

is r x 1.

Specification of the System A equations will now be given.

occurs in the synthesizing algorithm only as a matrix loading operation

System B
BBll BB12 BBlB 612 CBl
mn mfB mB n m
B2l B22 B23 1| B2
an oB aB B o
BB3l BB32 BB33 ﬁi CB3
on af aB B o
- _ ] .
BB23 , BB32 and BB33
af af o By B3
and 8 running from 1 to 3; Ca' and C
has r components (n=1,2,...,r), then
BBl3 are r x 3, BB21 and BB3l
mf on an

and never as the result of a combining operation.

Here,

BAll

kg

A21°
Bs g

A3l
Ba2

—

Al12
By
A22°

By

A32
ay

are 3 x 3 matrices with the

are 3 x 1

are 3 x r while

It should
be noted that since System A is a single body, the following form of System A

System A
System A -y
- qR, \
gAl3  pAls (CAl
kB kg w k
ej
A23° _A24° Y \= ) a2°
s Pos S %
“g
gA33 [A34 | A3
af aB \ a }
p— Rl
B
1,2,.».,nj
0,1,...,
Py
1,2,3
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Thus, ALY Al2 . .Al3 Al4

Bkz is an nj X nj matrix; Eky' is nj X pj 3 BkB ng BkB
Al A21 . A22 .
aren, x 33 C is n, x13; B is p, x n, ; B is
3 k . 3 o 62 o 3 i 8y °
A23 A24 A2 .
P. X P, 3 B and B are p, x 3 3 C is
h| h| 88 88 j )
px 1 3 B 4s 3 xn, ; ph32 is 3xp, ; B33 a gl
3 © Car 3 i’ ay j a8 af
are 3 x 3 ; Ca is 3 x 1.

(Note here that the sub-matrices occurring in the equation for ei appear

(-

with a superscript denoting removal of the Ath row of the sub-matrices

if 61 Z 0 ; hence, 6 and ¥ need not run fully from 1 to 3 as must o
and B8 . However, the full sub-matrices must be loaded as they appear

in the System C equations except for Equations 5.17-5.20)

Finally, the output of the Flexible Combining Algorithm has a form
identical to the output of the Rigid Combining Algorithm.

Syatem C
. — — - e
cl1 _cl2 _C13 14 c1
Bab BaB BaB eb Ca
c21 .C22 _C23 S B
Bab BGB BuB wB = Ca
a2 ||
| - _ . L
where
a, B= 1,2,3
8, b= 1,2,...,(r 0, +py)
and
0
eil
n
iy ~3
% 9
K
Y
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again with the column matrix Q$ including only the degree-of-freedom

components at the interconnection of Bodies i and j.

To complete the description of the Flexible Combining Algorithm,
it is .now necessary to explicitly specify the elements of the matrices
BC and CC and to show how the elements of the matrices BA and CA
are initialized. (Note that if System B is a single rigid body, it is

initialized as shown in Section 4.3.)

g1l _ All Al2
ab ke ky

A21° A22°
Sy

BClZ _ Al3
ag k8

B013 _ Al4
ag kB

Cl Al
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c21
Bab

Cc22
af

c23
BaB

Cc2
Cc31
Bab

Cc32
BGB

C33

on : ag oL :
BB32 + ir BA33
oB o of
a5 e
R

defined as follows:

Aji(T) BA21 + Eij

ad gl ag
Aji(T) BA22 + iij

00 oY oo
BB22-+Aji(T) BA23

B og oB

B23 31 (D) A24
BGB + Aad BGB
CB2 + Aji(T) CA2

o ) af B

ir A32
Aad de ]
ir A3l
B
ap pl
Air BA32
ap PY
Eij Air BA33
acg ap pB
+ Eij Air BA34
ac op pB
~ 1] ir A3
L ag AcB C6

This completeé the definition of the Flexible Combining Algorithm.

It now remains only to detail the initialization of Systems A and B for

this combining algorithm. However, before so doing)the expanded form of

System C will be presented for completeness.
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AL
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By
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5.3 Iniltialization of the Flexible Combining Algorithm

As stated previously, if System B 1s a single rigid body, then its
initialization i1s identical to that of the Rigid Combining Algorithm presented

in Section 4.3. Initialization or loading of System A is as follows:

A1l _ 5 J
Bie w My

Al2 _ 5 34 3+
Bky m Ske Goy

Al3  _ ] ja i _ 3 3 ji  7ij
BkB m Skd AdB m ékd Adp zpB
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Al4
kB

Al

where Mil and Kil are respectively the Body j generalized mass and

stiffness matrices obtained from the Mass Properties Subroutine while

+

I o
m ¢kd

3 )gd4
-m ~3Sk8

j2 3
2 HkB wB

J b 3
Kee 4 v %

jr
A08

s35 4+ o

B

37
k8 B

310
Sk

*3
e 9

+ Qie

Vj is the input generalized modal damping matrix.
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A3 L ) @17 a6 (is

o ad g g B
. j6 3 j4
S + 2 H
“op “o8 8 “o8 8
+ ri®
a
In the above equations, CJj and R are external gen-

eralized forces to be specified in Section VII,. Finally, the SJl through

Sjlo are defined as follows (these quantities are computed for all flexible

bodies at the time the auxiliary variables are calculated).

i1 _ grf . cr i rod “r  “r i
Sa AwJ( 2Uog Rp o tog Rg T Ugp g Rs)
4071 i g
+
Aao gp pB zB
A S S L
o o af B
i3 _ [,ddo ado ji i Joi(T) _ 7j jjo 2o
sa [Aao Goe + (;ad mop Ape wao Aos eB BB
Jio Jo Rio = 100 -
+ Aac GGB 6B Pa [see (4-50)]
jo _ 3 _ 431
S8 = Yks Hes
i5 _ _ 73 ji i o3+ 23° 33 _ .17
sy wye Agp vg t* Gy O+ 837 =P
s - 4 4+ @i3
o o [s3
s37 o g3t 4 it 32
a a af g
j8 _ J(T) j6(T) . J4(T)
SO + H)) = S,
9 _ jf i8 3§10
S%8 Ig * By + Hyg
j1io _ ] i3 jo3
Sk Meag + Heap) “a 93
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In addition, the following quantities will be needed for the dis-—

turbance calculations

j11
.ska

312
Ska8

jl3
Sza

jl4
Ska

j15
S8

Once again the arrays

Subroutine, while

r
a
o]

to follow and should be calculated with the above:

r(T) ,je(T) .j
g Ags Bras

o (D e

8 Sa kzaB
ol s
- BiaB Ags a;
A
Bisa and Cizae are obtained from the Mass Properties

is determined by the Orbit Subroutine.
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VI. Distubance Subroutine

The Disturbance and Control Subroutines supply the perturbing forces

and torques required in Equations (4-56), (4-57), (5-39), (5-44) and (5-49).

At present, the Control Subroutine is not implemented, although the Gen-

eralized Control Interface Routine described in Section VIII is an integral

part of the program.

The general disturbance

rle
o

pie
o
Q°

rie
o

je
®, -

where all the superscript ic
forces and torques and
L N LS, kL
a a o
Pl - pA 4 IS
o a o
iD | oA s
% G 4 ot
Lt
o o a

equations are as follows:

TjD
o

+ i€
o

p 4 i€
o o

- olD jC
Q&

[}

LR
@iD + @iC

quantities are presently voild control vector

LS R N
a a a
P8 4+ pi6 4 pIP
a a a
j6
Q%

RI
a

2 A .
@F - O + OF + ®F
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Definitions of the individual terms in the above relations are amply
provided by the flow-diagram of Figure 6.1 as well as by the table of

Section X.

The following sub-sections present the equations necessary for program-—
ming the disturbances listed above (other than control disturbances).
Section 6.1 details initial expressions for the prescribed disturbances.
Section 6.2 (pages 45 through 60) details the environmental disturbance
equations for rigid bodies, while Section 6.3 ﬁresents the environmental
disturbance equations for flexible bodies. Since the rigid-body environmental
disturbances are identical to those found in the TRW GSS program,.their
derivation can be found in Reference 1 and is not included in this document.
However, the derivation of the flexible-body environmental disturbances is

presented in Appendix B.

6.1 Prescribed Disturbances

Prescribed forces and torques are allowed to act about the Body j mass
center. Specifically, the following analytical representation is utilized
initially: (tr is a reference time, normally equal to zero)
jf

PP o C3EL L 32 oy 4 odB3 i W e - e (6-11)
o o } o T o 3 r

e L R ¢ T W Ye: L R L S (6-12)
6] o .a r o r

>

In addition to the above representation, FiP and TiP can be input in

tabular form.

6.2 Rigid-Body Environmental Disturbances

This sub-section details the equations for the rigid-body environmental
disturbances. The format herein differs from that of the body of the report
in that an original document is included here in its entirety. The reason
for this inclusion is simply that the coding of the program proceeded from the
equations contained herein and therefore it is felt that its inclusion would be

preferable to a complete reordering of the equations and updating of the notation.

43



M3TAISAQ SUTINOIGNG 30 UeqINisStd

*1°9 9and14g

soTueuiq
L ol d
3]
nma
ard
+
aH ua
at v
am am
af vf
poqraosel K3tARIH o139ulel 1eTo0§ JTweulpoasy
TeutwoN TeUTWON TeuftwoN TEUTWON TeUTWON

)

)

A

K31AERIH
9TqTX314

iefos
2TqIXaT4

DTWRUApPO13Y]
2TqT*31d

sk

Apog °TqTXaTd
e [ Apog

44



1. INTRODUCTION

*
In what follows, forces and torques ( ), due to environmental disturbances
*%
resulting from aerodynamic (%) and solar radiation pressure, gravitational
attraction, and magnetic interaction, acting upon the rigid bodies of the

spacecraft model are presented.

To this end and in view of the fact that the magnitudes of the forces
and torques resulting from aerodynamic and solar radiation pressure are
dependent on the shape of the surfaces over which they act, four basic
shapes are provided for use in their computation.. These consist of: a
sphere, flat plate, circular cylinder, and a rectangular parallelepiped.

In contrast, the gravitational interactions are dependent on the mass
distribution of the bodies and their relative positions, whereas the mag-
netically induced forces and torques are only dependent on the positions and
orientations of the bodies. Therefore, the latter two disturbances can be

applied to an arbitrarily shaped body.

In the next section the force and torque (moment) equations for the
" four basic allowable shapes are detailed. The equations are expressed in

terms of a unit flow vector §f , a force Pf and appropriate constants

GJf s HJf . For solar disturbances, §f becomes a unit vector §S

directed along a line from the sun toward the earth, Pf becomes the solar

radiation pressure p° , and GJf . HJf become functions of the solar

o \ ; ; £
reflectivity coefficient vl . For aerodynamic disturbances, ¢  becomes

a unit vector §a directed along the negative of the spacecraft's velocity
Gt gif
become functions of the so-called aerodynamic reflection coefficient ol .

More specific values of Pf , §f , ij and HJf are given in Section 3.

f , a
vector, P becomes twice the dynamic pressure P, and s

* .
) These forces and torques will contribute to the vectors Fje and TI€ s
defining the externally applied forces and torques, of Section IV.

%k
( )The aerodynamic interaction implied here is that corresponding to free
molecular flow.
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Also included in this section are the gravitational and magnetically induced

forces and torques. Section 4 contains a detailed input/output specification.

In this appendix, matrix notation is used instead of the index notation

employed throughout the body of the report. Given the following notational

clarifications, this use of matrix form should not present difficulties in

interpretation:

(i) The vector £

where j
3 J

denotes the coordinate system in which the components of f are

is represented as a column matrix by {f}

given: i.e.,

.ol
{f}j = £ gg
P.el
j equal to r implies components in the orbital reference coordinate
system (xi s x; s xg), while j = e implies components in the inertial

e e

e
reference system (xl » Xy s x3).

(ii) A above a symbol denotes an outer product matrix: i.e.,
- T -r r
0 w . e, wo. ey
{;r} = W' er 0 —F et
r ‘=3 -1
- T -r T
] w e, wo. ey 0

(i1i)A superscript T on a matrix denotes its transpose.
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2. GENERAL FORCE AND MOMENT EQUATIONS

2.1 Forces and Moments on a Sphere

If Body j is modeled as a sphere, then its surface is:defined by
the-scalar radius RJ%
The total force on the sphere is given by

{ij}j e stz pf [—;- wf 4+ 636 {esf}j 1)

and the total moment about the sphere's mass center is

R G T

Where fjp is the vector position of the geometric center of the sphere
as measured from its mass center

2.2 Forces and Moments on a Flat Plate

If Body j is modeled as a flat plate, then its surface is defined
ijf

by its scalar area AJ and by a unit normal vector e’ as shown

in Figure 1. The plate need not be rectangular.

if

Area AJ

Figure 1. Surface Specification for a Flat Plate
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The total force on the plate is given by

{ij>j = pf ad | cos nd | [ij cos {ejf}j + it {Gf}j] (3)

where

%os nd = {ejf}: {Gf}j . _ | 4)

The total moment about the plate's mass center is

{7 = {7} ), | ©

where ijp is the vector position of the geometric center of the plate as

measured from its mass center.

2.3 Forces and Moments on a Circular Cylinder

If Body j is modeled as a right circular cylindér, then its surface
is defined by its scalar radius and length, ch and hjc respectively

and by a unit vector directed along its axis, g}f’ as shown in

Figure 2.

Figure 2. Surface Specification for a Cylinder
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The total force on the cylinder is given by

{ij}j - pf &I° [h1° stn n (473 535+ 269%) + 7 B3C Jcos o] Gje]{‘sf}j
6

+ Pf ch cos: nj[— 4/3 Hjshjc sin n:l + 7 ch"lcos njl Hje] {gjf>j

and the total moment about the cylinder's mass center is given by

{ij}j = % nnjcz 1€ pf cos nd (1% - &%) {’éjf}j {55}1

o,

where fjp is the vector position of the geometric center of the

N

cylinder as measured from its mass center,
In the above expressions, st and Hjs pertain to the sides of the

cylinder while Gje and Hje pertain to the ends of the cylinder and

cos n:l = {ejf}JT {Gf}j

sin nj = + v 1 - coszr'r1

2.4 Forces and Moments on a Rectangular Parallelepiped

(8)

If Body j is modeled as a rectangular parallelepiped, then its

surface 1s defined by three unit vectors (3?12, 3?13, 5?23

) normal to
any three nonparallel sides, and the lengths of these three sides le,
sz. LjB. Orientation of the unit vectors is shown in Figure 3;

where in general g;as is normal to those sides with area L3 L3f,
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312

/LJ L
4,

&3

Figure 3. Surface Specification for a Parallelepiped

The total force on the parallelepiped is given by

{ij}j = Pf le sz |cos njlzl [Hjlz cos njlz{ejlz}j + Gjlz{ﬁf}j:

o pf 131 133 Icos‘nj13l [Hj13 cos njl3{ej13}j + Gj13{5f}j-

N Pf sz Lj3 | cos n323| [sz3 cos n323{e123} + Gj23{5f} é

3

9)

and the total moment about the parallelepiped's mass center is given by

{ij}j - - % 31 132 133 5f [cjiz co; njlz{’éjlz}j + &3 cos njn{’e‘jn}

- 6 con B0 {60 L 7). (),

where Gjuﬁ,,HjaB pertain to those sides of area Lja LjB and

cos ni% = {ej“B}jT {Gf}j

(10)

(11)

Once again, fjp is the vector position of the geometric center of the

parallelepiped as measured from its mass center.

50

3



3.

Specification of Pf,‘ij, ij and {Gf}j

In the previous section, force and moment expressions were given for

. the four basic allowable shapes. These expressions contained quantities

which depend on the nature of the flow, quantities which will now be

defined.

3.1 Solar Radiation Pressure

I)

If solar radiation pressure forces and moments are required, then:
Pf = P°, the solar radiation pressure constant (P® varies as the
inverse of the square of the distance from the vehicle to the sun,

and is approximately equal to1l.005 x 10_7 d}’ne/gm2 in the vicinity

of the earth's orbit).

11) {Sf}j ={§s}j » @ unit vector directed from the sun toward the

earth. In particular,

(- o e, o w

with
-sin 6° cos 0.137
{Gs}e = sin 8% sin 0.137 (14)
-cos es
whefe
s AL s p
0" = mD [radians] (15)

and D° is equal to the number of days after the autumnal equinox

(it is assumed that 6° is a constant for the period being considered

s .
and D° is a mean value). In Equation (13), {AJe} is obtained from

the auxiliary calculations.
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111) JE - -3 (16)
HJf = 'Zvj

n

where vJ is the solar reflectivity coefficient for the appropriate

surface.

3

For the sphere and flat plate, only one value for v~ need be

specified.

For the cylinder, two distinct values for vJ may be specitfied,
one for the side and one for the ends of the cylinder.

3

For the pafallelepiped, three distinct values for v~ may be

specified, one for each pair of parallel sides.

3.2 Aerodynamic Pressure

If aerodynamic pressure forces and moments are required, then:

I Pf = Pa, twice the dynamic pressure. In particular,

PP =pV (18)

2, . , ,
where V© is the square of the magnitude of the spacecraft inertial

v = {fzr}T {far} (19)

] -

Here, {ﬁr}e is obtained from the Orbital Subroutine and p is the

velocity,

in units of [L2T -2

atmospheric density..

I1) {Sf}j = {Ga}j , a unit vector along the negatiye of the spacecraft's

inertial velocity vector. In particular,

{eohy = - {ae} {br}e (20)

where br e is obtained from the Orbital Subroutine.
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111) oif 3

pif

g

2(1—0j

where oj is the input aerodynamic reflectivity coefficient for the

appropriate surface.

For the sphere and flat plate, only one value for cj need be

specified.

J

For the cylinder, two distinct values for ¢” may be specified, one

for the side and one for the ends of the cylinder.

For the parallelepiped, three distinct values for o7 may be specified,

one for each pair of parallel sides.

3.3 Gravitational Force and Torque

I) The gravitational force acting on the rigid Body j is given by

e}, 2, T, s o (0 Lot )]

4

where y is the input gravitational constant for the orbited body as used in the

Orbital Subroutine, a® o is obtained from the OrbitallSubroutine, and mj is the
mass of Body jJ. '

II1) The gravitational torque on Body j with respect to its center of mass is
{ch} 3Y-:- je <Al‘} { je}T{ j} { je}{ r}
: y= = A a f, A I A a (22)
- (R") j ¢

where { IJ}j are the components in the Body j axes of the centroidal inertia

tensor of Body j.
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3.4 Magnetic Torque

I) The magnetic torque on Body j resulting from its interaction with the

geomagnetic field is given by the expression

o - o} 4o,

J J

> .
where {Hjj} is the magnetic field strength of the earth at Body j and {Bﬂ}
‘ h

]
is the magnetic moment of Body j. The geomagnetic field strength at
*
Body j can be approximated by the expression( )
31nAl 51nA2 cosk2
M
{HMM} = - —4 sin2>\2 - 1/3 (24)
®>* |
cosk1 31nA2 cos).2
Where 4° is the magnitude. of the earth's magnetic dipole moment. Typically,

M® = 8.06 x lO25 oefsted-—cm3 for the earth. Expressing equation (24) in

Body j coordinates gives

{HjM}r ) {Are}{DeG}{/CGM}{HNM}
AR (8 i S |

II) In the above expressions

-t [fof o) Lo o]

e B
\] 1 —[{DZ}T {hpee} far {93}]2 e

Equation (24) is based on a tilted dipole model of the geomagnetic field.
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{ Go} _ o 1 0 | - (29)
D sin‘i’G 0 cos‘l’G
dr T aip BT _gog MU 11'_1'
€0S 7180 9 T 180 57180 °'™7
‘ ud 11w . llm g - :
{CMG}E sin Tggcos 3 cos Tg5 sin Jg5~ sin g (30)
P : s
I sin 9 0 cos )
T
{CGM} } {CMG}
{DeG} } {DGe}?
\yG . sin6 cos(0.13m) .\ o cG
, cosOs 86,400
G _ .. . ’
t° = time in seconds after noon (GMI)
. T
)« b
s 2n° s
®" =35.24 D
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4. SPECIFICATION OF INPUT AND OUTPUT QUANTITIES

The required input andAOutput quantities will first be specified for

the case of solar radiation pressure disturbances.

denctes an input constant and [1] denotes a non-dimensional quantity.

Conventionally,

4.1 Solar Radiation Pressure Disturbances

General Input Quantities

) ,
p° ,
e}
4.1.1 Sphere
RIS ,
o
]
N s
4.1.2 Flat Plate
Al ,
S
{Ljp}. ,
3
v ,
4.1.3 Cylinder
ric ,
ndc ,
S
J

solar radiation pressure constant (IC)
mean number of days after autumnal equinox (IC)

transformation matrix

radius of the sphere (IC)

position vector of the sphere's geometric
center as measured from its mass center (IC)

solar reflectivity coefficient (IC)

area of the flat plate (IC)

unit vector normal to flat plate (IC)

position vector of the plate's geometric center
as measured from its mass center (IC)

solar reflectivity coefficient (IC)
radius of the cylinder (IC)

height of the cylinder (IC)

unit vector along axis of the cylinder (IC)
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{Ljp}, , position vector of the cylinder's geometric

J center as measured from its mass center (IC) L]
vjs, vie s solar reflectivity coefficients for sides and
ends of the cylinder (IC) [1]
4.1.4 Parallelepiped
LJl,LJZ,LJ3 . lengths of sides (IC) [L]
{;le}j’ {eJl3}j, {ejzs}j , unit vectors normal to sides (IC) 1]
{LJP}, ’ position vector of the parallelepiped's

J geometric center as measured from its mass
center (IC) ' (L]
vjlz, le3, v 23 » solar reflectivity coefficients (IC) _ [1]

General Output Quantities

{FJS}. s salar force on Body j ' [MLT_Z]
J .
3S ) 2, -2
T 3 s solar moment about Body j mass center [MLET
4.2 Aerodynamic Pressure Disturbances
General Input Quantities
{Rr} s velocity vector of the orbital reference frame
e -1
LT 7]
{Aje} s transformation matrix [1]
{br} s unit vector parallel to " [1]
e .
4.2.1 Sphere
RJS , radius of the sphere (IC) (L]
{LJP} S position vector of the sphere's geometric
3 center as measured from its mass center (IC) (L]
oj , aerodynamic reflection coefficient (IC) [1]
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4.2.2 Flat Plate

AJ s area of the flat plate (IC)
{ejf}j , unit vector normal to flat plate (IC)
{LJP}, , position vector of the plate's geometric
J center as measured from its mass centetr (IC)
oj , aerodynamic reflection coefficient (IC)

rJ€ s radius of the cylinder (IC)
hic s height of the cylinder (IC)
{ejf} . unit vector along axis of the cylinder (IC)
{LJP}, , position vector of the cylinder's geometric
J center as measured from its mass center (IC)
GJS, cJ€ s aerodynamic reflection coefficients for sides
and -ends of cylinder (IC)
4.2.4 Parallelepiped
le, LJZ, LJ3 , lengths of sides (IC)
{ejlz}.,{eJl3}j,{e323} , unit vectors normal to sides
J 3
L ' - o
3 s position vector of the parallelepiped's
. geometric center as measured from its
mass center (1IC)
cj12,0313,6323, aerodynamic¢ reflection coefficients (IC)
General Qutput Quantities
{FJA} , aerodynamic force on Body j
]
{TJA}j > aerodynamic moment about Body j mass center
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4.3 Gravitational Force and Torque

General Input Data

Y R gravitational constant for the orbited

body (IC) ) (312
mj , mass of Body j (IC) M]
R ’ magnitude‘of orbital radius vector
) ' (L)
{Ajr} ,. transformation matrix (1]
{Rj}r . vector from orbital reference to Body ]
mass center ’ (L]
{Ajé} , transformation matrix o | [1]
{ar}e s unit vectér parallel to e : (11
{Are} s transformation matrix [1]
{Ij}j s Body j inertia matrix (IC) : [MLZ]
General Qutput Quantities |
{ch}. s gravitational force on Body j | [MLT_Z]
{TjG>j y gravifational torque on Body j [MLZT—Z]
4.4 Magnetic Torque
General Input Daté
{Mj}j . magnetic moment of Body j (IC) [MLZT-Z(oersted)_l]
u® , magnitude of earth's magnetic
field (IC) [L3 (oersted)](*)
{Aje} . transformation matrix (1]

* - -

) [MLZT 2(oersted) l] is equivalent to [L3—(oersted)]. The latter
form is included for the user's convenience, since the torque then
has the proper dimensions of

2

T—2

[TjM] - IMLZT—z(oersted)_l] [L3—(oersted)] = ML
L
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{Are} R transformation matrix [1]
t , mean time in seconds after noon (GMT)(IC) [sec]

p°® mean time in days after autumnal equinox (1C) [days]

General Output Quantities

{TJM}j s magnetic torque on Body j [MLZT_Z(oersted)-l]

M
{H }r ’ earth's magnetic field strength at Body; [oersted]
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6.3 Flexible Body Environmental Disturbance Equations

The following equations constitute the generalized forces acting
on the flexible bodies of the spacecraft model due to solar radiation pressure,
aerodynamic pressure and gravity gradient effects. Derivations are con-

" tained in Appendix B.

Note here that those environmental disturbances of concern in the
analysis of the Skylab vehicle have all been included (solar, aerodynamic,
gravity) while magnetic disturbances are neglected since the design of the
various flexible arrays (negligible dipole moment requirement) precludes the

problem of magnetic interaction.

38 _ ps A3 ,3r(D) I g3 (T de qe
R = P A A { vioB (B Ay S
(6-13)
j je e () e _e
+ -V Ay S, } B A spl
38 _ ps a3 4 I R (RI(M  Je e
q P A °ka{ Vol @t agl sl | o1t
b Je e J(T) je e
+ (1 -v) Ay S, } | B, A sp|
. ~o] - .
38 _ ps A i3 i gl (T L Je .r
®; = P A (4 Hae){_ vioBy (B A3y by
(6-15
k| je e 3(T) ,je .r
+ (1 - v Ay Sy } |8, Lo bpl
RiA = —pv? A Aig(T){ a - o Bg (BgFT) Agj bz)
(6-16)
j je .r 3 (T) je .r
+ o) Agg by } | AL bpl
JA L _ g2 A Gl . h| Ty de . r
Q" = -V AT o { a-oh By (B Ay, b
(6-17)

+

Jo,Je . r J( ,Je . r
6" Agg Dy } lBo A bp]
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where

. ~o] . . .
JA _ g2 L3 i3 _d h| j(@ ,je .r
®I* = - pv* & (r,g + Hyp) { a-oh By (8 Aye DY)

3 je (el 1xi(T) ,je .rT
+ ¢ A66 S } |Bd Adp bp|

3
3G _ym J re r 3(T) re r
Ra (Rr)3| [Ra 3 AuB aB (Ro Acp ap)

Jr(T) 33 _ re v r Lje(T) Li3 ]
AaB HB 3 AaB aB (aC Aop Hp )

+

j . . .. .
6 _ _ ym [ i r _j hi i3 i3
Q N o Bug Mg tOD O M, 9y 3¢y @

j ,je _r r(T) ,re(T) 3y _ 2 uJ je r
3 ¢ka AaB aB (ao Aop np) 3 bka AuB aB

3 X - . \
(:>jG _ 3ym ade ot Aje(T) IJf pde T
o (Rr)3 afB B8 Se €0 op p

i . . — \
_oym® jé ir 3 _ i6 ,je r , 3(T) ,re r
&3 [SaB ABG ny 3 SGB ABG a (nd Adp ap)

je r o ,je(m , 3(D 11(T) J13(T), 3
+ 3 A 25 M by~ * Sg ot Sy ) ¢ ]

3 i ir(T)

R- + A 1

B ‘e

o o
1 f—j -5
Y ¢ dm
k o Bj k

3 x(T) Lie(T) 3
bka = 8 AeB BkBa

3
[}

o
(%
1

Bj=;_f;j e
ke mj 3 k

B
i x(T) ,Je(T) ] je r
ke ae Asu CklaB ABG as
b 1 =3 73 h|
c = = ¢ ¢ dm
keaB~ 3 Jp3 kR
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(6-20)

(6-21)

(6-22)

(6-23)

(6-24)

(6-25)
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ju1 _ x(T) ,Je(T) _j -
Ska ag AGB BkozB (6-28)
jl12. _  r(1) ,je(T) .3 _
Sk..Q,B - ae Aea Ck..Q.aB (6-29)
i3 _ 3§ 312 _
Sta % Skea (6-30)
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VII. Orbital Subroutine

The dynamic equationsvfor a multibodied flexible spacecraft presented
in the previous sections of this report are written with respect to a
reference axis frame. One important choice for specification of this reference
axls frame is that it lie on a user-defined Kepler orbit. The orbit routine,
as specified iﬂ this section, calculates this reference orbit. The orbit
equations contained herein were specified concurrent to the rigid-body
environmental disturbance equations and thus are likewise included Here
in their original form in order to retain correspondence with the computer
programming documentation. As in the case of Section 6.2, matrix notation
is used herein instead of the index notation employed throughout the body
of this report. (The orbit subroutine commences here with Section 2.0

following.)
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2.0 COORDINATE SYSTEMS AND NOTATION

In describing the motion of the reference axis frame, two right-handed,
orthogonal coordinate systems are of basic importance. These coordinate systems
are defined and described below. The inertial reference frame is defined with
respect to the earth as the orbited body. In case orbital motion about another

celestial body is desired, an appropriate inertial reference frame must be defined.

2.1 1Inertially Fixed Coordinate System

The inertially fixed coordinate system with axes (xi,'xg, xg) has its

origin at the mass center of the earth and is defined by unit vectors gi,

el e
=2’ =3 o
vector e, is normal to the equatorial plane and positive northward, while

directed along the appropriate axes in a positive sense. The unit

gg is directed along the autumnal equinox. The coordinate matrix for this

system is given by

{_g_e} . o8 . (2.1)

o
=3

Since the coordinate system is inertially fixed, its rotational velocity vector

is given by
W= 0 . (2-2)

2.2 Orbital Reference Coordinate System (

The orbital reference coordinate system with coordinate axes (xi, xg, xg)
is defined by unit vectors gg, g;, g; such that _; points toward the earth's
- mass center, g_i liés in the orbit p;ane and forms an acute angle with the
tangential velocity vector while g; is normal to the orbit plane. The coordinate

matrix for this system is given by
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|o
A
———

r el
{3,} = 1% (2-3)
oF
=3
and its angular velocity vector is denoted by
w40 . (2-4)

The vector distance from the center of mass of the earth to the origin of

(xi, x;, xg) is R. | ) )

2.3 Notation

The following common notational rules will be used in the sequel:

(1) The vector f is represented as a column matrix by {f}f where j
denotes the coordinate system in which the componenté of f are

given; i.e., »
T. e

{eh -

i
]
(N

]
.
(]

[ Sy

j equal to r implies components in the orbital reference
coordinate system (x{, x;, xg), while j = e implies ccmponents
in the inertial reference system (xi, xg, xg).

(i1) A Aabove a symbol denotes an outer product matrix; i.e.,
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0 W . e, e,
{Gr} = w.er 0 -w' . el
..__3 ' -—'1 .
r
- —r r —r x
w.e, w'o. ey 0

(iii) A superscript T on a matrix denotes its transpose.
The following sections are devoted to the determination of ir, ' and

their required time derivatives.

3.0 ORBIT EQUATIONS

Let us now define the orbit equations for the reference frame (xi,xg,xg).

The position of the reference frame is determined by the equation for an inverseée-

square central force

Il G
dtz M
where
Foa- Mg
g (Rr)3
with: M = total spacecraft mass [M]
R" = magnitude of R° [L] A ‘
Y = gravitational constant for the orbited body (GMb) [L3 T-Z]

where G is the universal gravitatioral constant

and Mb is the wass of the orbited boéy

(For the earth, vy = 3.98604 x 105 km3/sec2 = 1.40766 x 1016 ft3/sec2)
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Thus, the position of the reference frame 1s determined by

2z =T
_d_%— = - YR (3.1)
dt (Rr)3

Equation (3.1) represents the motion of a point in an elliptical orbit about

a spherical »planet, Figure 3.l.

Position of reference
frame

Perigee

Apogee

Figure 3.1 Orbit Parameters
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Letting

P

l

orbital period (T]

I

€ = eccentricity of orbit [non-dimensional]

the semi-major axis of the orbit is givén by

2/3
Y
()

where the "mean motion" w_ is defined by

] (3-3)

with R being the equivalent circular orbital frequency in radians per

unit of time.

The true anomaly ¢y is determined by

b e 2 ol [‘/ T, (g)] 3ty

where the eccentric anomaly E must be found as a solution of Kepler's

equation

E-csin E = W, (t - tp) . (3-5)
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Here, t_ 1is the time at perigee and the quantity wo(t - tp) is the mean
p -

anomaly. -

The radial distance to the reference frame, Rr, is given by

2
r _  a (1-e7) -
R= 1 + ecosy (L] (3-6)

In addition,

Vav(l-ez)

rr2 )

<.
ll

-1

(T -] . ' (3-7)

By differentiating the above relationships we find that

. Y -
R" = ‘/“———“——*“ g | (3-8)
a (1_62) e siny [LT 7]

sr £ycos ¥ ~2 _

R = ——————Rr 3 , [Tl (3-9)
. - 2 eysiny -2 _

v of 3 . (T "] (3-10)

4.n MOTION OF ORBITAL REFERENCE SYSTEM

. . e e e .
The inertial reference system (xl, x2,x3), the orbital reference system

(xi, xg,xg), the transformation between them {Are} and the angular velocity
vector w' ‘of the orbital reference frame are independent of the relative motic
of the bodies of the spacecraft and can be written as functions of the orbit

parameters and time. We now determine these functional relationships.

4.1 The Inertial Reference Axes

The inertial reference axes have their origin at the center of mass of

the earth.
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The xg axis is normal to the equatorial plane and is positive in the north-

\ e \ .
ward direction; the x, axis lies along the zutumnal equinox.
~

ee

Equatorial Plane

Autumnal Equinox — ™

Figure 4.1. Inertial Reference System

The coordinate matrix of the inertial axes is given by (2-1) as

ee

=1

e = ee
{9. _‘2 .

ee

=3

4.2 The Orbital Reference Axes

A rotation of the inertial axes through an angle B about the g; axis
produces the {g?}system in which gg lies along the line of nodes (intersection

of the orbit plane and the equatorial plane, Figure 4.2) with gg directed toward

the ascending node.
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\
Line of Nodes ——e\
\

Figure 4.2. Line of Nodes

With {9_8} = ef y . let {Aﬁe} be the transformation matrix which

transforms the {_e_e} system into the {g_B} system such that

) -

where

cosfB 0 -sinf
0 1 0 ' (4-1)
Be
A =
{ } sinf 0 cosf
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and

-sinf3 0 -cosf3
{ Aﬁe}= 5 0 0 0 : (4-2)
cosf - 0 -sinf

Rotation of the {gﬁ} system, Figure 4.2, about gg through an angle 5, the orbit

inclination angle , produces the {gﬁ} system, Figure 4.3, where gi lies in the

orbit plane.

K 4 Orbit Plane

Equatorial Plane

Figure 4.3. Orbit Inclination
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With {g_g} = , let {Agﬁ}be the transformation matrix which transforms

v
vy

=3

the {gﬁ} system into the {g_g} system such that

vhere
cosf  sin 0

{AgB} = | -sint cosé o | . (4-3)
0 0 1

Since £ is a constant, £ = 0 and

{Agﬁ} = 0. | (4-4)
Rotation of the {gg}system, Figure 4.3, about _:e_g through an angled produces the
{g_a} system, Figure 4.4, where _g(; passes through the orbital position of the
reference frame. -
P 5
eE =Eg ﬁ -1

\‘Orbital Position of Reference Frame

Figure 4.4 Orbit Angles
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With {EQ}>= o\, let { &yg}be the transformation matrix which transforms

where
cosa
a§} -
{ o
sina
and
-sina
{Aaﬁ} A
L cosa

-sina
0 . (4~5)
cosq
-cosu
0 (4-6)
-sinoy

The orbital reference system (xl, x2, x ) with unit vectors ei, ez,

e3 has its origin at the orbital reference p01nt -with e3 pointing toward

nadir, e _1 in the orbit plane forming an acute angle with the velocity vector

and g; normal to the orbit plane, Figure 4.5.

75



Figure 4.5. Orbital Reference System

Thus,
r _ o r _ _.«o r_ _.a
&1 €10 & ey » &4 ey
r
rl & ) e
Letting ‘{g_! = and letting } A be the transformation matrix
of
=2
of
=3

which transforms the'{ea}system into the‘{g?} system, we have

where
. 0o 0 .
{ Ara} - 0 -1 0 L (4-7)
2 0 -1
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Combining the previous equations,

| {Er} _ {Ara}{AQE} {EE}
or, letting {Arg} - {Am} {A“g},

)+ 1)

where
cosQ 0 -sina
rE} -
{A 0 -1 0
' -sina 0 -cosQ
and
-sina 0 -cosc |
{Ar§}= a | O 0 0
-cosa 0 sina
Similarly,

s}
s
[
[
(a4
(24
[T
=]
V0]
-
P
-3
[
[
-
it
s
>
o
e
e, o
o~
>l’7?
=)
Sunre g’
>,
w
(¢
et g
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where

(cosacosécosPB-sinasinf)

sinfcosf )

(cosasind)

( -cosé )

{Are} ¢

(-sinacosBcos-cosasinp) (—sinasin§)

(-cosacosEsinB-sinwcosg)
( -sinésinf )

(sinacostsinB-cosacosfB )

Thus, {Are} is a function of the three orbital parameters B8, § and ct.

(4-12)

The angle ahas been defined as the orbital position of the reference frame with

respect to the ascending node while ¥ has previously been defined as the true

anomaly or as the orbital reference position with respect to perigee.

if ab is the orbit angle between the ascending node and perigee, then

o= +y
14

and from Equation (2-7), (2-10):

v a¥Y (1 —52) [T-l]

2 b
RE )
_ | -2¢Y sin¥d [T_Z]
r 3 )
R
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The orbital inclination, £ , is an input constant. The nodal regression

‘rate 8 due to the orbited body's oblateness is given by

, 2 '
3J
B =- 2 (Rz ) w, cos § [T—l] (4-15)

2(1 - 62)2

where Rb is the radius of the orbited body and J2 is the

second harmonic of the orbited body's gravitational potential. For the earth,

R = 6.378 x 10° km = 2.093 x 10’ £t
J, = 1082.28 # 0.3x10°°
(The above expression for B as well as the value for J, of the earth are found

2
in the Reference below (*)., If Bo is the value of B8 at time of the first

nodal crossing, LI then the parameter g is given by

B =R + Bt-t). (4-16)

Since the matrix {-&B} is zero (Equation 4~4), differentiating the relation

for {Are gives

.{Are} - {Arf}{Aw} {Aﬁe} + {Arf}{AEB}{Aﬁe} .o (4-17)

But, it can be shown that

fie) - b}

Rewriting Equation (4-17), we find that

i+ () e ) o) (o 0 O )

- ) 4 - e b 4B

T

(*)Escobal, P. R., Methods of Orbit Determination, John Wiley and Sons,
Inc., New York, New York, 1965. ’
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Expanding the above expression,

where

Therefore,

ke

and, since £ is constant,

.

sinécos
-cosé

-sinési

ésinfcosa
- B cost-Q

- Bsinésina

-ﬁ& sin {sinw

-

-Basinécos @™
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Finally, letting

o f

the following qﬁantitiés are defined:

e, - e e {s)

- e

P —
< e o
N [a} o}
R
© ()
0 n |
—— ]
.
WH .
- [
© a]
BTy
e
o} ~
S — e
o a
——
w
a]
- —
+
=]
2]
v .
€
a]
-
~
.
wn
~
o
A

b* = {kr}3/v
el e el 1
e owde) {or e e {a, o i

o
]
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(4-25)
(4-25.1)

(4-26)
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5.0 CONCLUSIONS

We have here documented the determination of those orbital parameters
necessary to specify the reference axis frame in the given Kepler orbit.

In particular, the requisite input parameters are simply:

a, = orbit angle from line of nodes at time zero. [radian]

‘ .ap = orbit angle between ascending node and perigee. [radian]

w
(o4
]

angle between autumnal equinox and the ascending line of nodes
measured in the equatorial plane at time t: [radian]

o-}
]

orbital period [T]
= orbital eccentricity. [-]

€

£ = orbit inclination with respect to equatorial plane.[fadiang]
Rb = radius of the orbited body [L]
Y

J

3 .~2
= gravitational constant for the orbited body [L™ T ]
2 = second harmonic of the orbited body's gravitational potential [-]
tn = time of first nodal crossiné'(—P<tn50) [T]

The output parameters are:

R = magnitude of orbital radius vector RE [L]
' = magnitude of orbital velocity vector RF LT )
{“F}f = inertial angular velocity of orbital reference frame [T-ll
_{QF}r o= inertial angular acceleration of orbital reference frame [T-2]
{Are} = transformation matrix from inertial to orbital reference axes [-]
N - —lr
{Rr} = column vector representation of R . [L]
e . : :
{ar} =  unit vector alonglﬁr. [-]
e
r 1 *r -1
{R } : = column vector representation of R°. [LT 7]
e. . s . .
{bi}" B - unit vector along ®. [-]
V e‘ ’ e —2 .
{ﬁr} - ~ column vector representation of R, (LT ]
. A L ‘ .
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6.0 EXISTING COMPUTER PROGRAMS .

Since a digital orbital routine identical to the one presented in this
report has been successfully coded in the existing TRW Generalized Spacecraft
Simulation (GSS) program, this routine is included here for

reference purposes. (Note change in expression for B and inclusion of (59)-(65).)

6.1 Subroutine SETPRB

This subroutine initializes the orbit parameters and computes the con-
stant portion of the orbital computations. The initial eccentric anomaly (EK)
is computed and used as the starting value for the first iteration of Kepler's
equation. TPER, the time at which the spacecraft last crossed perigee is com-
puted. The semi-major axis'of the orbit (AXIS) and a related constant (AESQ)

are computed from which the nodal regression rate (BD@T) is computed.

SUBR@PUTINE SET@RB

a - o
v = o, = %
= : -1 u_l’-_e : Sin(‘p) ’
Ex 2+ Ton ( l.+¢ 1.+cos (¥)
* TPER = -(Ek - esin(Ek))P
2n
B = Bo
* a = @y
AESQ = a(l.- %)
. ' ' \ 2
x B - - - ) (Rb) 21 _cos ()
, : P ,
2.(1-5_2)2 2
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6.2 Subroutine @RBIT

This routine computes the orbit angle ALPH (the true anomaly measured
at the center of the earth between perigee and the origin of the reference
frame) at time T by solving Kepler's equation using Newton's method of
iteration. Each iteration is begun by assuming the previous value of ALPH
as a starting value. A maximum of ten iterations is allowed, the iterations
ending when the difference between two successive values is less than 10-5.
If this condition is not met within ten iterations, the iﬁitial value is

changed, a message is printed out and the program begins the next case.

All orbit related parameters are computed within this routine, including
the orbit radius (RR),the radial velocity (RRDﬁT) and acceleration (RRDDT),
the orbital angular velocity (PSD@T) and acceleration (PSDDT), the angular
velocity of the orbital reference frame relative to inertial axes (§MRRC)
and its derivative (¥MRRD), the gravitational acceleration at the reference
frame origin (C@NG), and the angle between the autumnal equinox and the line

of nodes (BETA).
SUBROUTINE @RBIT

* (1) ECOUT

2r (T - TPER)/P

(5) SLYPE = 1. - ecos (Ek)

(7) STEP = E,_ - esin (E) - ECOUT
SL@PE

(8) E, - STEP

i

(22) Ek (1. - 0.1 KP)

where KP = Number of Restarts
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(36) Y
{44) ECPS
(45) RF
(46)  CONG
(47) RE
(48) RS
(49) P
(50) )
(53) B

o ()

e {o7p

(cosacosécosB-sinasinf)

(

e N (2)]

1. +€cos (P)

AESQ/ECPS

2
v/R

€ sin(w)\’Y/AESQ

CONG € cos(¥)
\JY AESQ /R’-’2

'1.3
-2.Y € sin(¥)/R"-

B.* é(t—tn) :

Bsin(¢) coé(a)
-8 cos () -¥
»-é sin(¢) sin(a)

-Bd sin(f) sin(a)
-y
-B¥sin(£)cos @)

(cosasiné)

sinfcosf ) ( -cos )

(-sinacosBcost-cosasinB) (-sinasiné)
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(—cosaéosgsinﬁ-sinacosﬁ)
( -gintsin8 )

(sinacosésinB-cosacosB )
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JP = JP+l
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Slope of Kepler's Equation.

Zero slope is error condition.

Compute one iteration of Kepler's
equation using Newton's method.

Equetion is solved vhen iteration
is less than 10-3,

Iterate 10 times.

If no solction, restart vith
different initial value.

Restart b times maximus.

- If oo @mtw, exit vith

crror flag set.
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- = (36)
O'H)GP ix'/}gp dc)!- aitY
{
1
ECPS = (L)
Rr- (45)
* CONG nl (46)
x - RE- ()
]
'Rr_- (u8)
¥ (49
]
1 ¥ . (50)
B = (53)
|
w"}= (57)
r
|
{_Cor};' (58)
1
{Are} =V(59)l
{ B
% '{Rr}e = (61)
x ar}e = (62)
.1
* {R }e = (63)
* {b‘r }e = (64)
* {f(r}e = (65)
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Conpute orbit angle.

Compute orbit radius

Gravitational constant at orbit
radivs and radial velocity.

Radial scceleration and angular
velocity.

Angular acceleration

Angular rate of orbital axes in
orbital cocrdinates.

Angular ecceleraticn of orbital axes
in ortital coordinates.



VIII. Control Subroutine

The UFSS Program contains a generalized control subroutine capability
which allows the user to quickly and efficiently synthesizé almost any con-
ventional continuous attitude control system. The control system simulation
capability is fully described in Reference [4]; this preent section describes

the interfaces between the dynamics and the controls subroutines.

Figure 8.1 presents a data flow diagram showing the various features

of the Dynamics/Control Generalized Interface. The Sensor Interface generates

jon cn
the transformation matrix Aig i and angular velocity components mi
necessary to simulate the nth attitude and/or rate sensor mounted at node

o

quantities are then transmitted to the Control Routine for use in performing

N (or at position N ) on a given Body 3 of the spacecraft model; these

the attitude and rate error calculatioms.

The Generalized Force Interface accepts as inputs the forces and
torques produced by the Control Routine and transforms them into the gen-

eralized forces required by the Dynamics Routine.

If the control and steering laws (or any relationships existing in
the control system) involve the solution of a differential equation, then
the appropriate dependent variables are referred to as components of a control
state vector. These control state vector equations must be added to the
dynamic state vector equations and integrated simultaneously; this combining
of the dynamic and control state vector equations is effected in the State

Vector Augmentation Interface.

8.1 Sensor Interface

Assume that the nth control element (sensor or controller) for Body j
is located at node N . In order to locate the elements sensitive axis, it

is necessary to determine the instantaneous orientation of an axis frame

located at node N and fixed in Body j. Specifically, if giN

3

frame based at node N and parallel to the e, frame for zero flexible

is an axis

motion of Body j, then it is necessary to determine the time-dependent trans-

formation matrix Aggj_ relating giN to eJ

g for Body j in its perturbed

position:
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N O _ N 3
& AaB €

where in general Aigj is a function of the qj (£=1,2,...,nj).

£
When Body j undergoes flexural motion, the axis frame giﬁ rotates

" from the gi orientation to its final orientation as shown in Figure 8.2.

Figure 8.2. Instantaneous Orientation
el of the ggN Axis Frame

To a linear approximation, this rotation of the ggN frame is expressed

s/
by specifying three small rotations about an axis set gi " parallel to the

gg set but located at node N . Calling these rotations ng ,A it follows
that

NG| N

wa eak W%
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where eiﬁ is the 3 .x nj matrix whose kth column contains the three modal

rotation components at node N of Body j for its kth mode.

Since the ¢iN are small rotations, it follows that

NG 3N ]
€a AaB g8
where
JN N
S ¥s
NG _ 3N JN
AaB ¢3 L I‘,}1
N _ 3N
or more simply:
NG _ N -
Aas GaB + "’ae (8-2)
where Gas is the unit ‘tensor or identity matrix.
Now let us locate the nth control element reference frame, call
it gicn , at node N . The frame gicn is related to the body-fixed frame
giN by a constant input transformation AignJN :
jen jenjN jN
Za AaB g
where
" JeniN cn cny, ,.ien _
Alg (3 )mY (G )YO (61 Dgg (8-3)

The (chn)ch are formed from three user supplied Euler rotations egcn as

follows:
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(- W
1 0 0
jen - _ jen jen
(G1 )GB 0 cos 61 sin 61
Casn plcn Jen
—0 sin 61 cos 61 )
i jecn _ jcnw
1 cos 92 0 sin 62
(chn)ae 0 1 0
jen jen
sin 62 0 cos 62 i
. . . A
jen jen
cos 63 sin 63 0
(jSn) -sin ejcn cos qun 0
3 oB 3 3
i 0 0 l_

Finally then, the nth control element reference frame gicn is related

to the Body j reference axis frame gg through the time-dependent trans-
formation matrix 'AignJ
jen _  ,jenj 3
Za _AGB g
where
adend  _ o pjeniNaN3
B oy Y8
It should be noted that if Body j is rigid, then AJNJ = § 80
end  eniN ‘ oB af
that ale™d - alcmd , a constant matrix.
af of
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In addition to calculating the orientation matrix Ajan , the Sensor

~-jcn =uB

. \ jcn cn
Interface calculates the inertial angular velocity w wJ ej

cn
of the gi frame, where

R A SR
, =iNj . jen .

with @ being the angular velocity of the ey frame relative to the
g% frame. 1In particular,

g LN

a =o

where

iIN N o

¢a eak Y
Thus,

jen _  ,Jenj. ] *iN

W AaB {wB + wB }
8.2 Generalized Force Interface

If the nth control element (located at node N) for Body j is a
thruster, then the output of the Control Routine is the instantaneous value
of the thrust vector components in the nth control element reference frame,

§jnt - ant ejcn
a =a

.

If the nth control element is a torquer (CMG), then the output of
the Control Routine is the instantaneous value of the torque vector com-

ponents in the nth control element reference frame,

Ting _ ping den
a -Q

If the nth control element is a gimbal hinge torquer, the output
of the Control Routine is the instantaneous value of the motor torque

components about the hinge axes,

Tajm.
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If Body i is a rigid body, then the output of the Generalized Force

Interface is the total force and moment about the mass center

jc  _ jenj (T) jnt ' _
P 2. Al Fy A (8-12)
n
ic (e o, e Jeni(D ne} 13
Ta :;: ag T3 Tag  PBy 5 (8-13)
where ;jcn = ricn gi is the input position vector of the nth control

element on Body j with respect to its mass center.

If Body j is a flexible body, then the Generalized Force Interface

must calculate the required generalized forces. Let us first assume that

the nth control element is a thruster at node N .

The virtual work done by the thruster force dfjtn acting on the

arbitrary mass element dmd  of Body j due to the virtual displacement

i

set o+ sl o+ 68 « (Ej + )

is
swinT - f ggdtm | [aﬁi + a3 + 89 x (& + Gj)] (8-14)
b
B

where

sR1 = ort of

o} -
=3 _ i .3 .3
Su 6q2 ¢2a €a
s69 = s el8

ol -0

But, for a thruster mounted at node N ,

agdem - B s @ - Nadd
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where

fjtn = thrust vector from the nth thruster on Body ] located
at node N (in gicn frame)
N = position vector of node N relative to the Body j
hinge (in gi frame)
de = arbitrary volume element of Body j
;j = position vector to an arbitrary point within de-
relative to the Body j hinge (in gi frame)
§(a - 50) = Dirac delta function having the property that
L4 - -_— j_ -
fj £a) & (-3 dv = £@a)
Thus B ‘
jnT _ =jtn i r N J ig =jN -jN
Sw = F .[GRa e, + qu ¢la ey + 5ea e’ x (r + u’)
or
jnT _ .3nT o1 jnT  j inT ] _
&W RITC SR+ Qi 8qy  + Q@a 867 (8-15)
so that
RjnT - §jnt . ef
o =a
jnT _ zint 3 3N
Qk F © &% %

Q-@in'r = pint [Sig « @Yo GjN)]

where RinT s 'QinT s (IGDg?T are the thruster generalized forces associated

3

9 and ei respectively.

with the generalized coordinates Ri R
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Thus,

joT _ int jen r
Ra FB gB e,
or
JnT _ ,rj ,Jeni(T) _jnt _
Ra AaY AYB FB (8-16)
Likewise,
jnT _ _Jnt _jen 3 N
Qk FB EB -a ¢ka
so that
T _ N jeni(T) jint _
Qk ¢ka AaB F8 (8-17)
Finally,
jnT _ jnt jen ig jN jN i
QC)(, FB &g - {gc x (rY + uy ) gy}

- .i8 jN JN k| at _jec
'9a°{(r‘y +uY)§YXF?3 gén}

_ 3T fadN ~3JN jenj(T) _jnt
Gao‘ {rcy + “oy} AyB FB

But, transforming from hinge axis to Body j axes,

. -1 inT
inT _  .3(T) Q®
®. = 1677, .

so that

jnT _ {»«jN + ij} jenj(T) . jnt _
@a Tay Yoy Ays FB (8-18)
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Let us now assume that the nth control element is a torquer (CMG)
at node' N . In order to calculate the generalized forces due to an instan-
taneous torque TjGn produced by this torque generator, one introduces
two fictitious nodes N+ and N located at the terminus of the vectors
1/2 € and - 1/2 € respectively from node N . At node Nt a force Fiot

is introduced and at node N a force ?jn— is introduced such that:

(see Figure 8.3).

1 e o- - Pt
2y T - 370 e x B 4 (- 172 §) x BT
= 1/2 5 x (¢ - oy

3) | e ] << 1

idn— i3n+
11—~ PRl Shatabdebet -
\ l_\“-’ N
\ _ == 1= \
‘ .‘_2_.—L*. \
! x- N N+ H
/ ——— /
P o ‘\__________‘__.f/'

Figure 8.3. Introduction of Fictitious Nodes

In this case,

ijnG = (ij+ + ij—) . 8Ri et
a =a
=IN+ j Nt ] ZIN- Y .\
+ F ‘ 6q2 ¢£u Sa + F * qu ¢2a €a
+ ij+ . aej ejg. X (;jN+ + GjN+)
a =a
+ ij— . aei_ gig X (;jN- + GjN')
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or

e GRi + o™ quj; + Q@iﬂc 592L , (8-19)
so that
R’ - o (since ¥ 4+ F¥- . o'). (8-20)
RN R
TR ¢ sl TR S LS L ¢ T
Let us first examine Qi“G .
U - L
H o= W/ . EI{N x (=38
"¢ - N .[&fj‘ NG x§5>] + Y [QN + N x (-%b]
= &" [% ex @V - FiN )]
= gt . pine
Thergfore
Qanc - °i§(T) Aggnj(T) TgnG (8-21)

Now let us examine Q@‘inc .
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QépjnG -

or

Retaining only the

so that

v s L @3N 4 Lo 4§V Qe @
e, > el

pdm gig I T L éiN . %a_)

FIN- | gig X {;jN + EiN . % E)}

el ;%g x (P ;,,jN-)g

_ig @ @Y x ;o o« Y

el® . (qi 62“ 1o o« BV

8. w4 B @ B x B = N+

lowest order term,

Q@inc - Eig‘. 7ing

af By Y

@3¢ - Pend®  ping
[s ) QB B

Finally then, the total control generalized forces acting on the flexible

Body j are:

ic | jnT
Ra ; Ra

f = X @™+ g™
n
jC = j T j G
C:)i :g; (C) an * C:)an )
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IX. Mass Properties Subroutine

The UFSS Program requires that the flexible deformation characteristics
of the terminal bodies in the spacecraft model be expressed in terms of
three-dimensional orthogonal functions. The standard source of these
orthogonal functions is a Structural Dynamics Program (SDP) wherein each
designated flexible body is modeled in the traditional structural dynamics
sense as a lumped parameter system. The basic requirements placed on the

structural dynamic model for a given flexible body are as follows:

1. The structural dynamics model for each simulated flexible body
must basically consist of point masses only, with no significant
lumped inertias admissible (no large lumped inertias are admissible
because of the manner in which certain mass integrals over the
flexible bodies are presently calculated). It is felt that this
restriction is not a serious one particularly in view of the
significant increase in calculations and cost necessary to allow

for large lumped inertias in the structural dynamics model .

2. All three components of the lumped mass at a given node must be

identical.

3. If sensors and/or thrusters are mounted on a simulated flexible
body, then a node point (joint) must be positioned at each sensor
and/or thruster location and modal rotations must be available

at these node points.

The UFSS Program is designed so that choice of a structures program
is completely arbitrary so long as a basic data set is obtainable. In

particular, the SDP provides the following data set for each flexible body:

1. Model Description

1.1 joint coordinates (ri)

1.2 joint mass values
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2. Orthonormal Mode Specification

2.1 eigenvalues associated with each mode

2.2 joint deflections and rotations for each mode (eﬂu and Bik)

It is important to note that no development work was intended on the
SDP. Depending on the particular choice of a structures program, it is
only necessary to appropriately reformat the output to agree with the format

of the Structures Tape as given in the UFSSP Users Manual.

The Mass Properties Routine utilizes the modal and structural dynamics
model data described above to produce the special mass property quantities
required by the UFSSP for each flexible body of the spacecraft model. 1In

particular, the following quantities are calculated:

mj = f dmj = Mass of Body j (9-1)
BJ
3
ad = 1_3 /  oam? = E d% gé = - gt (9-2)
3
=3 - 1 =] i _ E J h| _ -
<1>2 3 / ¢2 dm %«B e (2 1,2,3...nj) (9-3)
m |
B B=1

3
3 - 1. =3, 73 I E J RN -
YQ 3 . ' x ¢2 dm YQB EB (% l,2,3...nj) (9-4)

m BJ B'—"l

3
53 - L. 73 . 33 i 3 3 -
z, ; L xE A z : Zigg &g (ks471,2,3...0,) (9-5)
. L TS I B 3 ]
M‘kl mj / ¢k ¢2 dm (k,2-1,2,3...nj) = le/m (9-6)

B3
3 3
=5 - 1 =3 =3 b - ad i i
52 3 by dm Z Z Bras Sa S8 (9-7)
Bj o=1 =1

(£=l,2,3,...nj)

102



Y f o % dn’ Z kzae & 2
m Bj a=1 =1
(k,2=1,2,3,. .nj)
3. L I B |
D, = ] f r 9 dm (& 1,2,3,...nj)
m 3
B
= _ 1 T 23 0z3y - z3gd h|
N!L T / § (r ¢£) r ¢2 dm
m j .
B
3 3 ‘
- b 33 ..
_z anse es (#=1,2,3,...n,)
a=l B=l
= nd _ ad
where NlaB Dz SaB BlaB
=j  _ S s R Brs R
S 8 (4 o) 4 ¢y dm

where Eizaﬁ

j ed  (k,2=1,2,3,..

laB -8 ’nj)

3 _ A
%0808~ Cigap

Bj
3. ; Lo
] i_ L =
Z Z IaB %2 S o I
a=1 =1
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(9-9)

(9-10)

(9-11)

(9-12)



where fj ' ig the standard inertia tensor for Body j with respect to the

ej frame with origin at the Body j hinge.

-8

In several of the above equations,

3 3
3 = E E 8 ed e = Kronecker delta tensor
a8 -0 -B

a=l g=1
1 0 0
608 = |0 1 0
0 0 1

Finally, the generalized stiffness matrix for Body j is computed

as follows:

b I
Ke ™ 3 ‘51;9. “t)

so that Kil is a diagonal matrix whose 2th diagonal element is the square

of the %th eigenvalue for Body j divided by the mass of Body j.

The integrations indicated in Equations (9-1) through (9-12) are

replaced by a summation over the nodes (Joints) of each flexible body when

the indicated quantities are calculated.
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X. Definition of Quantities

The following tables define the quantities used in the UFSS Program.
"Body (F,R)'" specifies if the quantity is used for a flexible or a rigid
body; "Comp" specifies the program area in which the quantity is computed
and "Used" specifies those program areas where the quantity is used —

according to the following code:

1. Orbit Subroutine 7. Flexible Combining Algorithm
2. Disturbance Subroutine 8. State Vector

3. Control Subroutine 9. Mass Properties Subroutine
4. Auxiliary Calculations 10. Input ' .

5. Sequencing Algorithm 11. 1Initial Conditions

6. Rigid Combining Algorithm

The units are mass (M), length (L), time (T) and the derived unit force (F)
equal to MLT_Z.
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Appendix A. Derivation of the Basic Dynamic Equations

This appendix contains the derivatioﬁ of the basic dynamic equations
for the UFSS Program. The first section gives details of the derivation
of the governing equations for a single flexible body. Section A.2 docu-
ments the derivation of the Flexible Combining Algorithm, while Section A.3
documents the derivation of the Rigid Combining Algorithm.

A.1l. Equations of Motion for a Single Flexible Body

Since only terminal bodies of the spacecraft model are assumed to be
flexible , the equations for an arbitrary flexible body (Body j) are
derived explicitly conéidering its 1imb (Body i). Specifically, referring
to Figure A.l1 the instantaneous position vector &j to an arbitrary mass

element dmj in Body j is as follows:

o R -CINPU - £ - (A-1)
where RT is the inertial position vector to a reference axis frame, Rt s
Eij , ;j and u are as given in Figure 2.3.

Inertial
Frame /

Figure A.1. Position Vector Definition for Body j
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The first time derivative of a is

T v /) @ ox ' o+ Mo+ @ ox )

]
e

4 5
@)
st o+ d s @ ok

where of ’ ai and Bj are the angular velocity vectors of the reference
axis frame (eZ), the Body i fixed frame (gi) and the Body j fixed frame
(gi), respectively. (The gi frame is assumed to define the undeformed

position of Body j.)

The Kinetic energy of Body j, Tj , is formed as follows:

= % %?(&j) . %t—( al) dand
B

Therefore, substituting Equation (A-1) into (A-2) and performing the necessary

integrations over Body j, the Kinetic energy becomes:
Tl = szl'[I_(r +’RP e @ ®hH o+ s @ ox Tzlj)].

R R S - B S N B )

n
RN I
3 k,2=1 n
+Zq1{53 w ai+%iqiqgai.i§£.53
kﬁ:l n k,2=l
WPy P,
k=1 k,4=1
where
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mass of Body j = scalar

3]
Q.
8
[
]
o
w -
o
(SN
[}

vector
=1
3 _
31‘1 dm:j = Z (bleB 'g:; = vector
g=1
;j X ¢i dmj = Yie gé = wvector
B8=1
T R R |
¢k X ¢2 dm = }E: Zle eB = vector
g=1
Ei Ei. dmj = sgcalar

kap ga gB = second order tensor
0 48=1
_ L [=-j =3y _ = —j]j
= 3 fj 8 (¢ ) b 9 dm
B

3 3

= :E: Ei ej ej = gsecond order tensor
o —a —B
a,B=1
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3
3 = R R
8 :E:_ 6&8 e’ e second order unit tensor

1, B=a
§ = = Kronecker delta
ag

[Note: the dyad or "leaning product” formed from two vectors (such as

;j ;j . ;j Ei ) yields a second order tensor. In particular, the

following identity has been used in determining the above expression for

Tj:

(A x B) .- (C x D) = (C @ - B - (C B) (D )
= C [5(B Dy - B D] A

A, B, C and D are vectors.]
The strain energy of Body j is defined to be
. n . :
3. 1.3 i 3 3 L
v 2 @ 4 9 K

where

Kiz = the generalized stiffness matrix of Body j associated with

3

the generalzzed coordinates qk and qp

Likewise, the dissipation function for Body j is defined to be

io_ 1 ol z i -
> = 3 & g Vi,
2 k2.=1 k k2
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Vﬂz = the generalized damping matrix of Body j associated with the
3

generalized velocities ék and &2 .
Now taking as generalized coordinates for Body ] the three components

of R » the pj gimbal angles ei (y=1,...,pj) and the n, deformation

h|
coordinages qa (k=l,...’nj)s the Lagrange Equations for Body j are as
follows:
[ord | 3 3 3 j ~
4 Ay AT, A, A L 23 (kel,..i.0m))
de 15¢3 3q] 3q 5 k 3
AT R T
3 j ] i
d |aT 8T U D
E-E - _ j + 8 - + 3.. = @3 (Y=1’.."Pj) >
283 20 agd 267
Ly Y Y Y
3 3 3 i :
g_t B'fi - "Ti + wi + a?i =R3 (4=1,2,3)
k| 3R 3R aR ¢
L. O o ) o

where 9 3 . J ahd’dfj are the generalized forces (environmental distur-—
k Y o

bances, control forces, etc...) associated with the generalized coordinates

3 h|

9 eY and R$ , respectively.

3

A-1.1 Equation for qk

Performing the indicated partial differentiation, the equation for

]
qk becomes
m? {[Rr + RY + 2@F x RY) + @ x R + o x (@ x RY

+ s @t x o+ @t x Y

-1 1 i3y | . 3 3ocio. =1L 5
+ w x (0 x 2 — )] °k + Mk!, qSZ, + Yk
B IS R B =3 .oz 3 _ -3 . F -

w 2y, q£ 2 w Zkz qy w Nk . wl
- =5, =3 d 4. 3 43 3 3V o

w Beg © 9 9 Keg 93 F Vg 9 (" Rk
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(Note in the above eéuation and in the following, repeated subscripts are

summed over their allowable range; e.g.,

n
b I i i 3
Ko 4 (st Kig 9%

Rearranging and writing the above in component form we have

R ST S L R I O
CEE e e b SL ) e WD GE e 23 )]
SR A S AL R L
S T P A R T
+ V1j<z a =atj<
where: Hii = qi zila'
e " 4
Hos ~ T Fasas

Rearranging once more,

I3 43 34 03 _ o3 31 iy ed 3 dr H
" ;Mkl ql + Ska “a 0ka Aa& ‘268 “8 * °ka AaB RB
o) Il 4 G331 g2 0, g3z 3 G310 i 3 :
T % Sa + %o AGB SB : 2 Hka Ya Skv * Kk£ qz (a-4)
I S o) _ 3 3 e »r
ERTILY) t gzk ™ e AaB RB

where:
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gil

)
o

j4
SkB

j2.

4i10

k

SRS .,:,;B R+ :,;p ;;B Rp
Kl Yz Upp %
}iiJ' + 3 ‘iB QEJ
Hly
(Niae HiiB) 'wi Q%

Now, introducing the following relationships between w o, % and the

gimbal angle derivatives,

1% R A | S iio jo 23o »
= A + G + 3]
“8 Ba “a By & * A% Gy O (A5}
3 ji -1 b I 35
= A + +
“g ga “a Cay & T 58
where
<35 “j Ji i 3% B j3
S + G + S
8 “By 2o Y By %y T °B
and
i3 {on . L Joi(D | i 3oy glo | g
s3 = {a GO+ (Mg w o A - G 0
8 BY Yo By “ys 5p ey 50 ) %o | %
+ AJjo Gjo ajo ,
8Y YO O
the equation for qk becomes:
g4 o3 Bl j& 31 o1
+
;Mkz qz ka Gow ey + Ska AaB “8
_ h| ji i3 -4 j jr "i ‘ojb i5
¢ka Ahﬁ lGB wB + @ A 8 8 + Ska S o
i Q37 j2 3 j10 h| j
t Qka Sa 2 Hka Sk + Kkl ql
RS S el _ 3 3 e gr
+ V g 9 ; ’Zk m (pku Ath RB
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where

7 _ il i 32
S = Sy t Ayg Sp

Finally, the equation for qﬂ can be written in matrix form as follows:

All _A12 _Al3 _Al4 r"j Al
[?kl By  Big Big ] 1, = %
'é.‘]
Y - (a-6)
al |
8
"y
Rg
- ~
where
Al .4
Bes = ™ M,
Al2 _ 5 34 3
BkY m Ska GaY
A3 _ 34 31 _ 3 .3 31 i3
Bes 7 Sia 2aB m % fas Y
ALY | 5 i
Big woe, Ag
AL _ 3 ).as 35 L 3 47
Cx w15 Sg Y %a Sy
32 3 o310
T2 Hg wp - S

i 3oal, e
T K%t Vi qz:*’qk

It should be noted in the above equation that

j |
e _ 3j _ _ _ym 3j je T
Q =Ri ( N %o Mg Rs)
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that is, the gravitational force acting on ﬁody 3 if Body j werae located

at the origin of the reference frame has been removed from the external

generalized force term by equating it to the,éorresponding acceleration

term to produce the following orbital equation

Ym 3 je r J 43 je
(Rr)3 °ka AaB RB m °ka AuB
or
g Y T
R, = - R
B (Rr)3 B

r

R

g = 0

which is solved in the Orbit Subroutine (See Appendix B).

Thus, Qie represents all external generalized forces associated

]

with 9

except the gravity force which would act if Body j had its

o - r
mass center positioned at the origin of the reference axis frame ey

(terminus of ir).

A.1.2 Equation for Ri

Once again performing the indicated partial

equation for R; is as follows:

(note that ii

m el fRT + RN+ 2@ x BH o+ @' ox
-r -

+ w x (w X ﬁi) + Eij + 2(5i X

+ o x (51 X ElJ) + (GJ X 53) +

8 g s 2@ W) @+ @ s
o x @ ox 8 ot o)
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differentiation, the

i r
= R, &)
Ri) +
iy 4+ owt o« W o+

S ok @ ox 3 o+

7J ]
@k) S +

(&7)
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Rearranging and writing the above in component form we have

-~

mJ"'Ri +2 Wl f{é + ['r + o W ]Ri

o8 “ap ay "y 178
ir(T)["ij "1 eij 71 i i i ij]
+ Aa& Agw + 2 Wsg !LB 2’68 W + sy “va 9'6
jr(T>[..’"j R e B TN PR PR T ¢ SRR
A dgg g * W5y Yyp 93 * % Yp T Uyg %ay T 9
S - B 3003 330 _m3 _ 3 ,re of
Hyg W + Wy Wi By f ﬂa W Ag Ry
whére H%3 = qi ¢i6. Again introduciﬁg the relationships (A-5), the above
equation becomes
313D (T 3 3, 3r(T) 36 3 ]
" % Aad QGR LY m AGB SBG GGY ey

[

_f J3r(m 36 31 A1 (T) *ij] °1 o
[:Aap SpG A&B + Aap QDB wB + R

jr(T) [ jr “r =i I T i
oA Agy (ZwYG Ry + (“’YG *ougg W) RG)

ji i ti ,ij RER & ~i -:Lj]
AsY wyc W 16 + ABY (2,Y + 2 wy& 26 )

3£ (T) [ 36 35 L T3 3 o6 -y 34
+ - s + + 2 H
A By oy wes Ysp Sp wgs Mg

3 re .r
A R
af g

or more simply

mj%,Ajr(T) AM o1 i JITM 336 3

as . Tee Y T ™ fup B ey Ty

S EHEIE T AR I
N EUE I A R A
LR
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where

sib - g 4 i3
o o a

jb ofs R |
T G Po

Finally, the equation for Ri can be written in matrix form as follows:

-
A3l A32 A33 A3 % | - A3 Jr(T) ji
,[Ba2 or  Bas  Bup ] a C,o + A Fy
= |
Y | (A-9)
ol | |
B,
l.i
_RB
where
AL (D) (D)
Ba2 m Aac ¢0£
gA32 3 dr(D 336 o3
oy ag op PY
gh33 | _ 3 Jr(D 36 i 5 in(D i)
aB ) op pB ag oB
A4 _ 3}
BGB m GaB
A CA3 o - mj Ajr(T) Sj? _ §j6‘ Sj5
o oo g gB 8

s B B 1 3 g4 je
S + H, 1+ R
_ “op “oB 78 2 Yop T a

Once again, somewhat as in the case of the equation for qi ,

. s 3 .
je _pd _ [_ _ym re _r \_ 3r(T) _3ji
R, =R, ( w3 B Re) Y " Th
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Thus, the gravitational force acting on Body j 1f Body j were located at
the origin of the reference frame has been removed from the external gener-
alized force term by equating it to the corresponding acceleration term

to produce the orbital equation

] . -
_ _ym re .,r _ _j ,re > r _
&3 Ae g m A Ry 0

or

Y REF - §F
(Rr)B B B

which is solved in the Orbit Subroutine.

In addition, the hinge force acting on Body j due to Body i (?ii =
Fii gi) has explicitly been separated from the remaining external gener-
alized forces in order that it may be most conveniently utilized in the

Flexible Combining Algorithm to be described shortly.

A.1.3 Equation for ei

The equation for 63, can likewise be obtained by performing the
"appropriate" differentiation. However, in this case T is an implicit

=3

function of 63 and éi only through the appearance of w* and various
: 3

transformation matrices occurring in the expression for T- when written .
in terms of components of the vector quantities. The required differentiation
and subsequent algebra is extremely long and a much simpler formulation
arises by considering the torque equation about the Body j hinge:
25 ), | .
-3 - - =41
f @ e w2 lwd - @ o+ (A-10)

BJ : dt2

where TJ 1is the total external moment on Body j about the Body j hinge and
Tji is the hinge torque acting on Body j due to Body i. The second derivative
of Ej is
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C - R o+ R+ 2@ x ®YH o+ @ x &Y

+ o x (ar X ii) + iij + 2((:)i X iij)

+ (v x Eij) + Ei X (Ei X Eij)

+ @ ox T + o x @ x o o+ &

+ 2@ x o) + @ xoh + & ox @& x

Substituting (A-11) into (A-10) and performing the necéssary integrations

over Body j, the torque equation becomes
3 ; [ hE¢Y) j6(T)] -3 if j1o j8 *J
m Ya2 + Hal ql + IaB + HaB + HGB ws

36 31 cij i 336 L dr wi L 36 (37
Sae 235 foy Yy as %35 Rg * Sy S

+oad, |3E 4 w10 4 I8y, 12D 3y i
‘BS $ o a

aB RS BS . 8 8 8 Y
N
where
jg B qi zika c Hii

R

ng - éi qi" Eizas = éi Hiig

Hiéo ™ Aqi Eizas - 9& Hiig

Hiél B qi Nias

jiz _ -3 3
HuB NlaB
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Introducing the relationships (A-5), the equation for ei becomes

e W A S e

m TEERY) af  BY ¥ a¢ gB B
R LT & S & B | oJ6  ,ir o1 39 .35
SaB ABc zcy wY + Saé AGB RB + SuB Sﬁ
36 37 L 71 39 315 3[
+ SaB SB + waB S86 w6 + 2 SaB mB
- 7J ji _ 3 236 ,je r
= Ta + Ta m SaB A86 R6
where
38 | 3D 16(T) _  J4(D)
Saz Yuz + Haﬁ Suz
j9 . L3f j8 310
SaB IaB + Haﬁ + HGB
315 39 §12(T)
Finally, the equation for 9$ can be wfitten in matrix form as follows:
A21 _A22 _A23 _A24 "4 .V ji
[Baz Byy  Bop Bae] qQ C, + Ty
o3
Y (A-12)
&i
B
.y
Rg

where
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A21 _ j8
Ba% o Sal

a22 _ 3 39 3
B m Sud G

ay ay '

syt = el sl Al - WS M L
Be T ™ Sk Ao

L A HE

15

REDCIIPSL N AP
af

a¢ OB B

+ @ie

3
W
B
Here again,
j ~ .
@ -5 - (-2 g ) -
(R™)

Thus, the gravitational force acting on Body j if Body Jj were located at the
origin of the reference frame has been removed from the external generallzed

force term by equating it to the corresponding acceleration term to produce

the orbital equation

3

oyl 236 de x4 36 ,de Ir o _
&3 Sas Bas Rs m Syg Ags Bs 0
oY
. j
RE = - I3 Rg
(R)

which is solved in the Orbit Subroutine.

In addition, the hinge torque acting on Body j do to Body 1 (Tji =
Tii gi) has explicitly been separated from the remaining torques in order
that it may be most conveniently utilized in the Flexible Combining Algorithm
to be described shortly.
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A.l.4 Constrained Degrees of Freedom

The equations just presented for qi , Ri and ei have been derived
assuming that all three degrees of rotational freedom exist at the gimbal
hinge joining Body j and its limb, Body i. 1In generai, there will exist
fewer than three unrestrained gimbal axes and the equations must reflect

this fact.

Since the transformation matrix Ai; is determined from three sequential -
Euler rotations through the angles ei . 6% and finally 9% (see Section 4.1),
the order in which the gimbal angle rotations are locked is important.
Thus, eg is constrained first, 9% is constralned netand finally, if
necessary, ei is also constrained . Thus, if a single degree of freedom
exists between Body 1 and Body j, it is e{ about the first gimbal axis

gig ;3 1f two degrees of freedom exist, they must be e? and 6% .

1
In the equations (A-6) and (A-9) for qi and Ri respectively,
constrained degrees of freedom are simply. handled by replacing Giy by
Gi+ wherever it appears in the e?uations, where the super + implies
removal of the Ath column if ei = 0.
In case of the equations for the 63 themselves, constraints are handled
by introduction of Gi: wherever GiY apears in addition to elimination
of the equations for the constrained variables. This latter operation is

accomplished symbolically by introduction of a super-zero notation as

follows:
A21° _A22° _A23° A24°] il a2 41°
[Baz By  Beg  Bog Nl T % * %
gJ
Y
(:)i
B
%
L
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E~re: 6§, vy = 1,..., pj 3 o, B = 1,2,3; k, R = l,...,nj ,
whe e nj is the number of flexible degrees of freedom of Body j and pj

is ‘he number of relative rotational degrees of freedom of Body j. 1In

case pj = 0, the above equation is void and Bj is determined directly

by Bi and the input wvalues of the 910 through equation (4-10):

SN E o glo
W A wg T AR° G5 e°

A.2 Details of the Flexible Combining Algorithm

The Flexible Combining Algorithm is used only when System A in a
given combining operation is a single flexible body, call it Body j.
Referring to Figure 5.1, assume that System B has Body 1 as its member of
lowest ievel (1<j) and that System A is to be connected to System B to
yield System C.(See Sections II and III for a detailed description of the
system model and notation.) Assume also that Body £ is the lowest numbered
branch of Body i in System B and that j<g.

The equations for System A are given by (A-6), (A-9) and (A-12) which

are written below for reference

System A
(A1l A12 _A13 _Al4 ] Hj- [ AL] " ]
By Bey Bep Big % c, 0
A21° _A22° _A23° ,A24° | | g3 A2° ji°
Bea Bsy Bspg Asg Yl = | % + T
i '
gAl gA32 (A33 s || o A3 Jrm g
afl ay aB aB J a aB B
B

Let us now assume that the System B equations are of the form
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_ - ~ ) - 4

BBll BB12 BBlB eiz CBl 0
mn mf mB n m

BB21 BB22 BBZB éi - CBZ + Lil (A-14)
on o oB B o o
B31 B32 B33 i B3 ii

Bun BaB BaB RBJ Ca wa

b - o L_‘ - ol -

where L; is the total hinge torques on Body_,i exclusive of the torques
imposed by its branches numbered 2 & and Wil is the total hinge forces

on Body i exclusive of the forces imposed by its branches numbered =z £ .

Here, BB22 , BB23 s BB32 and BB33 are 3 x 3 matrices with the
aB oB aB aB B2 B3
indices a and B running from 1 to 3; Ca and Cy are 3 x 1 matrices;
if eiz has r components, then BBll isrxr, BBlz and BBl3 are
B21 B31 ™o Bl me mg
rx 3, B and B 77 are 3 x r while C is r x 1 . As used above,
“id an on m

en contains a component for every flexible and rotational degree of freedom

of Body i's branches and sub-branches numbered greater than or equal to ¢ .

We shall now show that the combined System C equations have a form

identical to the System B equations, namely

System C
- N ] T ~ =
Cll Cl12 Ci3 wif Cl
Bb BaB BaB Y c, 0
c21 C22 Cc23 of _ c2 1j A
Bub BaB BuB wB = Cu + La (A-15)
C3l C32 C33 g C3 13
Bab BaB BaB RB . Ca wa
L - - - -

and exactly how the elements of the coefficient matrices of (A~15) are

synthesized from the coefficient matrices of (A-13) and (A-14). Having

accomplished this, it will be obvious that the same synthesizing procédure can be
used to combine an additional flexible body to Body i since the new. System B composed

of the original System B of Figure 5,1,plus Body j is governed by the Eqs.(A-15)
which are identical in form to those of the original System B as given by (A-14).
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The réquired equations governing the motion of the combined System C

are as follows:
A) equations of motion for Body i translations
B) equations of motion for Body i rotations

C) equations of motion for Body j along those gimbal axes where
it possesses a degree of freedom with respect to Body i

D) equations of motion for the branches and sub-branches of Body i
E) equations of motion for the flexible coordinates of Body j

Let us first consider the equations for Body i translations. The

hinge force relation for Body 1 is given by
Ao g o, f
But, from Newton's Third Law
3 . §it

Therefore, using (A-13) to eliminate the

forces of interaction we have

i gt A3 A3l 7§ A2 j A33 i A34 i
F = A - C + B + B 6 + B + B R
a a g T B By v g g0 Fof
so that, since ﬁll = sz gi , Wij = w:J g; and Flj = FiJ(T) EZ
vhile FIt = piM J°_ T 4i " 1o
o -a o aB -B
10 _ 43 _ i@y g [ a3 A3l j A32
W W Al Al b+ Byt qy + B o)

+ BA33 &i + BA34 ii )
Bp o Bp p

Thus, utilizing the last equation set of (A-14)

~

BB31 ail + BB32 &i + BB33 ii - CB3' + wij + Air CA3
an n oB B oB B o o af B
A3l ) A32 %) A33 i A34 i
- B - B 5] - B - B R
YR BY ¥ gBo o Bo P $
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or finally

B31 il ir _A31 4 ir _A32 Uj
Ban en + AaB BBQ a3 + AuB BBY BY
B32 ir _A33 ([ -i B33 ir _A34( i
+ BaB + AL BOB s wg + BaB + A BUB f RB (A-21)
- B3 4 Al A3 i
o oB B

Thus, the following elements of (A-15) are now determined:

{ . ’ | ;
C31 B31 ir JA31 ir _A32
= 1
Bab [Ban | Bas Paa | Pas Pay ]
c32 _  _B32 ir _A33
BGB - BaB * Aad BGB
B033 - BB33 - Air BA34
af af ac OB
CC3 - CB3 + Air CA3
o o aB B
where, necessarily:
eil
n
i3 _ | "
6, a, (a-22)
g3
Y

with

a, B = 1,2,3

o’
]

1,2,0.0.,(r + nj + pj)

and the c¢olumn matrix 63 containing only the degree-of-freedom components at

the hinge interconnection of Bodies i and j.
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The equations of motion for the branches of Body i are exactly those

given by the equations for 612 in (A-14):

BBll eil + BBl2 éi + BBl3 Rl - CBl )
mn n mB B mB B m

The equations of motion for the flexible coordinates of Body j are

exactly those given by the equations for qi in (A-13):

All 7§ Al2 ] Al3 i Al4 i Al

Bea T T By 8 f B wp t B Rg = G

The equations of motion for Body j along those axes where it possesses
a degree of freedom with respect to Body i are exactly those given by the
equations for 63 in (A-13):
A23°%  of A24° i A2° ji°

"3 ' _ ' j
8y GY + BGB wB BGB RB CG TG

A21° 7§ A22°

BGR qg + B

Therefore, the following elements of (A-15) are now also determined:

—B:il 0 0 |

TN PRI

K Bgilo Bé‘izo
- B
B ol B s
_Bg§3° nga"
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— -
CBl
m
cl Al
Ca Ck
A2° i°
ratl Tg
L _

Finally, consider the equations for Body i rotations. The hinge

torque relation for Body i is given by

XN IECE RS -E RV LE
But, as before
A3 . it
and similarly
Tij - _ Tji
Thus, from (A13):
I B IR - RSN R L

and from (aA-12): [note that all three rotational equations for Body j are
required here to eliminate the interacting torques]

iy _ _ i3 ) _ A2 A21 3 | pA22 A23 i A24 1
T, Iy ; Cg° + Byy 9 Bgo 01 + Bg® o + Bp' Ry
Thereforé,
ETANT

a Q

1j A2 A21 4 A22 3 A23 i a2 1
- -t o+ + o + B W+
Aap B "ge % T Pay Oy g % T P Rp

“1j ,ir A3 A3l T3 A32 73 A33 <4 A34. 4
- + + 63+ + :
by Ay 3 Cy By 9 Boy O By, Uy Bao Ry -
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" Thus, using (A-14), the equations governing Body i rotations are:

B21
an

B

i

3
+ AaB

-
ao

or, mo

BB21
an

_ pnd
= Qa.

where:

Thus,

-~ "~

o4 , oB22 o1 . .B23 ~i _ B2 ]
n o B aB 8 o a
(T)g A2 A21 4 A22 4 A23 4
- B
Cg Bae 9 Bey %% 8o “p
ir | A3 A3l A32 A33 i
- - 3
Ase )% By 9% Bay % g0 Y

re simply:

-

~i 1075 2 3 30 e 4 i
en + Qaz 4 * Qay ey + QaB “g * Qaﬁ RB
+ 1
o
1 _ Ji(T) A2l . if ir a3l
Qal Aae BBQ + luc AoB BSQ
2 ji(T) A22 ~ij ir A32
= A B + A B
Qay oB By zaa gB 3%
3 _ .B22 JI(T) LA23 ;i) dr  ,A33
Qas BaB Aao Bcs “ag Acp Bpe
4 B23" Ji(T) A24 . cij ,ir _A34
= 4 B
QuB BaB + Aac BOB zuc Acp PR
Q= B2 4 LD A2 L gif dr (A3
o o af B ac oBf B

the remaining elements of (A-15) are now defermined:

t {
c21 _ | .B21 1 4 2
B [B : Qal | Qay ]

ab on
c22 _ .3 c23 4
BaB Qae ’ BaB QaB
c2 _ .5
Ca - Qa

137

(A-26)



Having now demonstrated that, given the System B equations in the
form (A-14) , the combined System C equations are indeed in the similar
form (A-15), it remains to prove that the System B equations do indeed have
the form of (A-14). There are two cases to consider: first, System B is
a single rigid body and; second, System B is an arbitrarily interconnected

system of rigid and flexible bodies with Body i being rigid.

Considering the first case, one simply has an initialization of the
System B equations. Here, the appropriate equations are the familiar

Newton-Euler Equations:

o JRY + ﬁi + 2 W x ﬁi + o x ii + Br x (Br X ii) = ?i
(A-27)
TR A
where mi and ?i are respectively the mass and centroidal inertia tensor
(dyadic) for Body i while ¥ and Ti are respectively the total external
force and centroidal moment acting on Body i.
Resolving the above ecuations into component form and eliminating
the orbital equation from the force equation, the Body i (System B equations)
become:
i dir i “r <1 or T “r i
+ . +
AaB RB 2 we R6 (w86 + mBY ng) R6
(A-28)
= ple 4 i L g
a o o
i i "i i i ie ij if ~1j ij
+ w, = + + +
IGB wB 8 IB6 we Ta La Tu laB FB

where Fie is the total external force acting on Body i exclusive of all
hinge forces and the gravitational force Body i would experience if it

ie

, =r
were located at the terminus of R , while Tu is the total external

centroidal moment acting on Body i exclusive of all hinge-produced moments.
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Thus, in this first case the System B specification [i.e., specification
of the coefficient matrices of (A-14)] is as follows:

B22 i
BQB IOLB

B33 _ j ir
B(!B = m A(IB

B23 _ _A33 _
BaB = Bae = 0

All the remaining sub-matrices of BB are void since 9: has zero

components {(m,n=0).

In addition,

B2 ~i i i ie
Ca “aB IBY Ys + Ta
B3 i ir T o] :r “r “r i ie
= - 2
Ca m AaB 85 R6 + (mBG + wBY wyd) RG + Fu
Bl

while Cm is void.

Considering now the second possible case; that is that System B is
an arbitrarily interconnected system bf rigid and flexible bodies with
Body i beilng figid, it is sufficient to demonstrate a second combining
algorithm which synthesizes the equations for two arbitrary systems of
interconnected bodies when System A is not a single flexible body. This
algorithm will henceforth be denoted as the "Rigid Combining Algorithm",
and its output will now bé shown to have the required form of (A-15).

A.3 Details of the Rigid Combining Algorithm

Consider the combining of two systems (Systems A and B) to form a
third system (System C) as shown in Figure 3.3. Here, Body j of level
(N+1) is the lowest leveled body of System A and Body s is the lowest
numbered branch of Body j. Body i of level N is the lowest leveled body
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of System B and Body & 1is the lowest numbered branch of Body i. Since
the highest numbered branches of a given limb are connected first by the

Sequencing Algorithm specification, it is necessarily true that j<& .

Here, System B is with no loss of generality identical to the
System B of Figure (A-2), hence its equations must be identical to those
given by (A 1l4), namely

System B
— -~ - < [ -1 [~ ]
BBll BBlZ BBl3 eil CBl 0
mn mB mB n m
B21 _B22 B23 .1 B2 | ) ooy
Ban BaB BaB wg Ca + La (A-29)
B3l B32 B33 g | B3 ii
Ban BaB BaB | RB J Cu wa
T - . e - -

In addition, System A must have a similar description and interpretation

System A
u - p jA— — Al—- — -
All Al2 Al3 *is
Bkl BkB BkB 62 Ck 0
A21 _A22 _A23 3 - A2 j; -
al BaB BaB wB Ca + La (A-30)
A31 _A32 _A33 5 A3 s
B | R
al %wB oB ] Ca wa
b ‘J = - . - e .
Here, BA22 s BA23 s BA32 and BA33 are 3 x 3 matrices; CA2 and
A3 aB  .5a08 af o8 All @ _A12
C are 3 x 1; if 6 has M components, then B is M x M, B
d M3 are w g pA21 and B3l e 3 x M 5&119 A e Mxa «8
an K@ Mx 3, ol w2 ks Mx 1.

Once again, 62? contains a component for every flexible and rotational
degree of freedom of Body j's branches and sub-branches numbered greater

than or equal to s.
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We will now show that the combined System C equations have the form
of (A-15)

motion of

as desired. Specifically, the required equations governing the

the combinaed System C are as follows:

A) equations of motion for Body i translations
B) equations of motion for Body i rotations
C) equations of motion for the branches and sub-branches of Body i

of motion for Body j along those gimbal axes where it
a degree of freedom with respect to Body i

D) equations
pPossesses

E) equations of motion for the branches and sub-branches of Body ]

Before deriving the above equations, certain relationships must be

established. Since Body j is a rigid body it is true by definition that

-3 -1

Rl o= gL o+ 73 - 3t

Thus, taking a first time derivative,

A B - I SRS+ T O R T T Y L R
or
Rlo= ®Rt o+ oo ox @ gy + 43+ gt o il X R B S

In component form (and substituting for ﬁi - ﬁj) one obtains the racursive
in terms of R. @

>3
relationship for Ra a

oj -i

_ ir(T) i3 JT(T) 3d

Ra Ra + AaB 28 AaB 28
ir(D) "4 _ °r ir(T) ij

+ AaB wBY B ABY z LY

R R 360 Nt BTN 116 )Y QO S

A “By T %8 By é g

141

-ji

(A-31)



Taking a second time derivative in vector form:

R+ 2 xR = ® e e’ s @ -+ F o @ O-RD
+ o x ['r x R - ij)] P B I I T
R TR T b Bl s e
- w3 e @ ox Y

or, in component form:

ii = ﬁi + Pig éé + Piz &g + Pi6 (A-32
where
RN
py - i
6 - WEORL L L “ijz
L - N
s SR AL ]

Let us first consider the equations for Body i translations. The

hinga force relation for Body i is once again given by

gt gl o4 §9

so that, using the relation Fij = - Fji , one has
Wik = Wij _ Aji(T) Fji
a o af B
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But, since Body s 1s the lowest numbered branch of Body i,it follows that

s - it
o o
so that
o S % N E N ¢ ) QA E (A-33)

o a af B

Thus, using (A-29) and (A-30),

A -

B31 ;iR BB32 °i B33 1 B3 wij

Ban- en + TaB 8 + BaB RB_ - Ca o
C 31T | AL t4s . _A32 +§ A3 I3 A3
AdB BBQ 91 + BBS w6 + B86 R6 Ca
oj “j 17 - js
Substituting for wy and R6 one finds (noting that here Pa g Sa )
BB3l sil + BB32 éi + BB33 ii _ CB3 - wij
an n af ] af B ] a
_ L, Ji(T) ) A31 4 A32 | 31 -1 i+ 17
A Bgy, 8, * Bgs |Apy W, t* Gg & + Py
A33 i . 10 i 19 [ 31 -4 + 17 16] A3
+ BBG ItR‘S + PGY wY + PGY ( AYO’ md G e + P + P, (h

or
B3L i J1(T) _A31 “§s JI(T)  ,.A32 3+ . A33 19 gk
Ban Sn + AaB BB% 62 + AGB (BBG G&Y 4+ BBG P<sp pr) GY

+[BB32 4 LD (BABZ AJi o, A33 10 A33 9 Aji):,éi

aB ad Sy Y8 8y Y8 8y Ye PB B
- B33 JL(T) .A33 |1 43 B3 _ Ji(D)| .A32 _17
+ [Bas + as " B :]RB = w4+ B ISPAR I vl
a3 (.19 .17 16 A3
+ By (PGO R’ o+ P ) Cq ]

or
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~ -~

BB31 Bil + Aii(T) BA3l gjs + P12 Gj+ aj + gBBBZ + Agi(T) BA33 P10

on B BL L aB  BY Y af 8 8y Y8
poez i e, i ganli s g g (1-36)
C s s el
where
IR L ]

Finally then,the following elements of (A-15) are determined:

! I
RC31 _ [%331 | AJL(D AL 12 3+

ob an ap B2 | af  BY
e T Tap * Mg Bay Pyg Ty Ay
B T Bap * M Dag
S AR L L -

The equations for the branches, and sub-branches of Body i are exactly

those given by the equations for 6j£ in (A-29):

~

BBll 812 + BBl2 &i + BBl3 ii - CBl (A-35)
mn n m8 8 mB 8 m

The equations for the branches and sub-branches of Body j are determined
from those for ejs in ‘(A-30):

ALl is . pAl2 - Al3

Beo %2 k8 Y8 T Bg Rg T Y

Substituting for &g and Rg one finds
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All is A12 ), 31 i
By 9 * B ;Aeﬁ Wy
‘ Al3 )i 10 -4
+ Bk6 ;RG + PGY wY +
or
All "j; 1
Bop 9 PkY eY + P
where
1 Al2 Al3
Py = gBkB * Bys
4 ) .Al12 Al3
Pra '3 B * Byo
13 _ Al A12
P T & Bg 7

L BNy
* Gy O P
19 [ 31 -1
8y (Ayc Ys o]
o Al3 oL
wB »+ BkB RB
19 { 3+
Pse | OBy
19 | 41 Al3
s sAse + Bs P
A13 19 | .17
Bk5 P68 ;PB

The equations of motion

possesses a degree of freedom with respect to Body i are obtained from the

equations for @l in (A-30):

8
A21 js A22
Bus %t Bag
But,
and as above
so that

3
8

w

for Body j along those gimbal axes where it

A23

BaB

Tji
o
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o w2
RB Cu
41 _ji
+ F
zaB B
3i [ 3s
+
t e W

10
68

BA13

P

k3§ 8

~

+ 138
o

16

(A-36)

(A-37)



Substituting from (4-30):

~

A21 is A22 -3 A23 =y A2 _
Ba% 61 + BGB wB + BuB RB Ca
ji -3 ) A3l s A32 A33 33 B3
Ta ¥ %olBr % B vt B R €
or
a2l 3 31l s A22 31 _A32{ .
Bag jchc Boﬂ. 62, + BaB lac BGB “g
+ gA23 o3l oa33 (o3 o3t | oii A3 (A2
of oo aB g o oo a a
Substituting for ég and ﬁg , one obtains
~xs ) gA . . .
gA21 pEE BA§1‘ J38 4 JgA22 | 73d BA32‘ LR
al o0 c% L oB ao cB 8Y Y
RPN & 170 A23 ~ji A33 i 10 -i
+ G 0 + P +<B - B R + P
BY v 8 ad Yoo Pos 8 sy
+ p19 a3t gt o4 oIt g3 4 pl7)4 16 ( o pit
Sy Yo o] Yo o] Y 8 o
gdi A3, A
a0 ¢ a
Rearranging,
2 4s 35 5 4 . 6 i 14
+ =
Poaf Py O T Pog U Ps Rg P (A-138)
where:
(-]
2 _}.A21 -3 A3l
Pag = ;Bal Y Bog }
3 20 g+ (°
P =P
ay 2 ap GBY ‘
20 A22 A23 19 - °ji A32 A33 19
= +
PaB BaB + BaG PGB zao ;BUB ap Ppe
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R ]
e
e, = {of
A A R A T

Where the super zero indicates retention of only the rows for which 93 £ 0 ;
i.e., the Ath row is eliminated if Oi =2 0 . Thus, using (A-35), (A-36)
and (A-38), the following elements of (A-15) are also determined:

pBll 0 0
mn
cir All 1
qu = 0 Bie PkY
2 3
0 Pa!. PO‘U
- _
BBlZ
mB
c12 4
Bog Prp
5
PaB
. —t
BB13 CBl
mB m
Cl3 Al3 Cl 13
= B ;i C = |p
BPB kg *7p k
6 14
GB_J Pu
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Finally, consider the equations for Body i rotations. Once again,

A

X & B -5 IR B3

But,

Therefore,

and using the relationships

Pl - gie
Bl oo s o gt o, @t
one has
s _optd L ogts . g . @S - B @S e
Substituting froﬁ (A-29) and (A-30),
P2 L g2 gl B2 R G2 Lol
I e R
T N R ol
Ll g g g, g g ol
or,
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B21 =ip . §.18 _A31 ji(T) _A21 "j;
an 6n + Pap sz + Aap sz el
: 18 _A32 j1(T) A22( ] B22 i 18 _A33 G ERGY)
+ +
+ Pap BpB Aap BpB wB + BuB wB + Pap BpB Aup
+ BB23 ﬁi - Lij + CB2 + P18 CA3 +' Aji(T) CAZ
aB B o a ap  p od ‘g
where
P18 i3 (D) | (D it
af ay yB ay Y8
Substituting now for &g and Rg one has
BB21 612 + P7 Sjs + P18 BA32 + Aji(T) BA22 Aji éi
an n al & ap pB ap pB By ¥
i+ % 17 B22 i 18 _A33 j1(T) A23 =i
+ G 0 + P + B + (P B + A B R
BY B ag 8 ap " pB ap pB B
+ P10 &i + P19 Aji &i + Gj+ sj + P17 + P16 + BB23 ii
By Y By \ Yo ¢ Yo ¢ Y B v8 B
o oo, B2, p18 A3 (D) A2
o o ap p og o]
where
P7 - P18 BA31 + Aji(T) BA21
al op [} ap pl
Simplifying the above,
BB21 eil + P7 ejs + P8 ej + P1l Aji 9 10
an n al R ay v ay B ay ~YB
B22{ -1 B23 9 =i B2 9 16
+ + - = +
BuB i wB BaB PuB sRB Ca PaB PB
11 .17 J1(T) A2 18 A3 i)
- P + +
PaB 8 AaB CB + PaB CB Lu
where
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p8 pll i+

ay ap By

9 18 _A33 $4(T)  ,A23
P = - P -

oy ag Bgy A Bay
pll _ pl8 A2 L Ji(T) A2 _ L9 19
af ay Y8 ay Y8 ay Y8

Thus, the final elements of (A-15) are now determined:

| [
3C21 [3321 i p? ; 08 ]

aq on al oy
Bczz - P9 Plo + P11 Aji + B1322
aB ay " YB ay yB aB
c23 _ ,B23 _ 9
Bug Bag Pas
Ccz - an + P9 Pl6 _ P11 P17 + AJi(T) + P18 CA3
af af B

o o T ] of B

It has now been demonstrated that given the two arbitrary systems
A and B of Figure C.3 with equations of the form (A-29) and (A-30), the
equations of the combined System C are indeed of the form (A-15) which allows
.the combined system to be used as either a System A or a System B in a
subsequent combining operation. Finally, if System A or System B consist
of a single rigid body, the initialization procedure is identical to that
given by (A-28) and the relations immediately following these equations.
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Appendix B. Derivation of Environmental Disfurbances

B.1  Derivation of Gravity Nominal Forces and Torques

For a spacecraft in a Kepler orbit, the magnitude of the gravitational

force at any point varies inversely as the square of the distance to the orbited
body's center. Referring to Figure 2.3, one finds that the instantaneous

force acting on a differential mass element of the terminal flexible body

is given by

=3 yol
d Fr = - - dm (B-1)
N

where vy is the orbited body's gravitational constant,

Pl = RT O+ R, (B-2)
R‘;,J:_ = 1_{1 + ‘ilJ + ;J + GJ s (B-3)
I _v -l l 2
and h = ¢S
In order to determine (pJ)3 , one first calculates SJ . EJ as
e e @ 2 'R+ @2
so that
ST =j I\ 2
. R" R R
Toph = @ v —5F v
(R7) R
and
_ _ - 3/2
1 _ 1 R - Rg R% 2
3.3 r.3 1+ 2 ———= 4| —= . (B-4)
(p7) (RY) (Rr)z RY
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A nominal value of (R% / Rr) is lO_7 so that (Ri / Rr)2 is small
compared to the first two terms in (B-4) and can be neglected. Expanding
the resulting expression in a binominal series and retaining only first

order terms yields

- —j
R™ « R
i Ll (B-3)
(07) RY) (R)
Substituting (B-5) into {B-1), one obtains the following expression for the
differential force acting on dmj
3 REGRL|
d Fj = - —%—5 1 -3 52 (R™ + Rf) dm® . (B-6)
(R") (R")
Substituting the propa‘expression.for ﬁ% from (B—l) one has
. S RS R R N U
aF¥ - - Xol1-3 R el (CHE S L I
(RY) (R7)
Expanding the above expression,
=T . . . .
d Moo= - LR dn? - —X— (Ri + Eij + )+ ud) dmd

&%) ®%)>

+—%§FV<?+W+#+$J(?+?+W+#+p>w.
(RY)
Neglecting flexible displacements compared to the dimensions of the spacecraft
and neglecting terms of order higher than (Rr)_3 , one obtains the final
differential gravity force to be used in subsequent calculations:

= R" =1, =i, =] , - j

g = - R Yo @4y o) dnm

(R™) R)

(8-7)

+ —3;13- [ﬁ? Gl L R e Gjﬂ R" dm
(R™)
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If Body j is rigid, then

M-

3

wd = 0 and the total gravity force is
j sr
_ ym R ij
r
(R )3

where the first term is the force Body j would experience if it were located

at the terminous of RF ; this term is combined with the proper acceleration

term from the dynamics equation for Body j and solved in the Orbital Sub-

routine as described previously in Section 1V. Thus,

FiC =/df‘j
gd
c oy
But,
R =
Therefore
FfC - - yud
or
FjG = _Lij. Ajr
o - r.3 aB
(RY)

The gravity torque on the
6 -

=3

R . 3y = &
(RS> (%3

R gr (see Orbit Subroutine)

- j _
e Y
(R") (R7)

N _ je T j(T) ,re T ]
RB 3 AaB aB ( RY Ayé as )

rigid Body j can be expressed as

.}(. zj x d fj
k|

B

where [~ 1is the position vector of an arbitrary mass point in Body j.
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Substituting the gravitational force in the form

d ¥

+

into Equation

or

- —I- @& + & + ) and
(R7)

X [ir. @ + Zj)]ir dn?

(R)

(119),

™ - X f @ =& ® - ad
(R7) g

'TjG = 3_]:.% / (ﬁr . Ej) ZJ dmj x RE
(R7)

BJ

Subtracting zero from the above equation,

or, with I
¢ -
where Tj is

736G 3r1)5 / Ej (Zj - &5 amd x ®F
(R 3
B
_ 3y ;jz RE dmj x RY
(Rr)S :
B

= the unit dyadic,

3y fT (T - &

®%)° 3

3Y  FF & (T@ - - ¢ P9 ah
(RF)” £

(RF)>

the centroidal inertia dyadic of Body j.
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Finally,

: . - . (T) .
36 o 3y e rooyderigd o pde or
o r.3 af  BS Sy Yo oap p
(RY)
where 1J is the Body j inertia matrix with components expressad in

afB
Body j axes with origin at the center of mass.

B.2 Derivation of Gravity Generalized Forces

If Body j is a flexible body, then the general expression for the

force on an element of mass, dmj , 1is

. =r . . . L .
dF = - 3——r—R—3 amd - —Lo ® + e+ ud) and
(R7) (RY)

P 3 Gt @t e E) e and

r.3 -
(R7)
Therefore, the virtual work done by de acting on dmj due to the virtual
displacement
SR + sud o+ 880 x (¢ o+ wd)
is
swid = / dFd -[ail +os5d o+ 88 x @ o+ Gj)]
d
where
§RE = 6R- ef
-a
-3 _ j 43 3
Su qu ¢ka -
583 = sed oJE
o -a
also,
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g _ gpie st I8 4] ig sl
owi8 = rRIE SR+ Q)F sg] + Q@IE o)

so that

83
J8 - /dirj S R
k =0 ko
3J
@ - fd?j ced® ok @ o+ Wy
3
B

where Rig ’ ng and Q(:)ig are the gravity generalized forces associated
with the generalized coordinates Ri s ] and ei respectively.

Y
Thus,
. h o - _: s
WE . L LE F oL rmg g, g, Y L
(R") '“ ®F)3 a
md i _1j L i3 .
+-1-—{a ® o+ 7o+ o+ @B e
(R) @
or ‘
Rjg = - L—E_j— Are Rr - l__.j_ {Rj +. Ajr(T) Hj3}
o (Rr)3 of B (R ) o af B8

3
3ym* ,re T 3(D) re 33(T) jey ¢
+ _L—(Rr)B A 2 (R A+ Hq Ayg) ;)

Finally, subtracting off the orbital term as described in Appendix C,

3

R o o X B ) b AE® %)
a (R) aB 8
(B-13)
]
3 ym re r  ,,.j(T) ,re 33(T) je
toan e e TR Ag *+ By B5p) 250

156



Consider now

qd :

- AL e d 3
Q8 = - y ol R 91 °-1;1a - '—I_a' @+ 7 el s a, %)
k (Rr)B (R") 3

RY 3
(R") 53
or
Q8 - L1 m g3 e gy ml ooy
k (Rr)3 ka "af B (Rr)3 k
Y =3 .33 43 - Y _ ot S re ST B
P ot b do )3 I Y
\| - _ ' o .
+llrln_.3_ (ér . nj) (ér . §i1) + _3_5% ér . / rj ¢ij¢ de - a
R ) 53
+ 3T -r./ 3P ad el P
(Rr)3 3 k L = 2
B
where ﬁj = ﬁi + niJ
Defining the following quantities:
Bk [ B
o 3
B
=3 . 1 =3 33 I | I 3
% T 3 / b b am Ckras Su B
BJ
A - -
Dk N mj ) rj . ¢i dmj = scalar,
BJ
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one has

Qj 4 a - Y mj @j Aj e Rr - __L__. {aj Aj r nj

k (Rr)B ko a§ B (Rr)3 ka “aB B
| i i3 =1 ,de r , x(1) ,re(T) iy
+ D +,Mkl 4 3 % AaB ag (ad Acp np)
_ h) je _r _ 3 h|
3 bkot Aas ag 3 Cleq qz}
where
i _ .x(T) ,je(T) ]
ka = ag 'Ao‘cS Bkéy
i - .x(T) ,je(T) ] je r
¢y = 3 Asa Ckeag 8p 3p

Finally, subtracting off the orbital term as described in Appendix C:

’ ‘ ] . .
G _ Y m. j ,3r 3 ] J i _ h| b
Q = - &3 Yalag M * %%t M, 9 3 o 9
h| je r r(T) ,re(T) j h| je _r
-3 4, A 3 (g Ao ”p) = 3 b, Ay aB}

ko “af
Consider now Q@g :

Q@ig = gig . j'{(Ej + Gj) xdf’j}
B

GiéT) gg' /; (& o+ ) x aF)
B
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But,

- - - b
J/}(rj + uj) x d Fj} = - JL—EL- 836 X (R + j) + 21—23 (SJ6 X a )(a
(R) (R")

___1;. d.4 3 rilezd L 3 ky oo Tigd
AR R CRR R R
B

Using the relation (a x By (c - d) = - bx(ac* d), the last term above

becomes

iy [ [FEeR R d i ed Bl s

R 53
=—5:i—r—‘:j§grx {AJ+qu1jc j(T)q-l+q,ic3 qg.”
= - é-Y--Ei'{- ar X ij ¢ ar + ar X Sj j + a b4 jll qj +a® x SJ13 j}
R%)> a 2 2 k9 Sk % ta a4y
wherg: mj ij is the Body j inertia dyadic about its hinge

S R A

k kaB “Bo 3 Za
=j13- _ 3 312, g2 _ 53 . r
5% G Sk 3 Sk Chg ~ 2

Finally then, since (:)ig = (Gj(Taa;l Q(:)gg s

. . i h| .
ig _ _ 'y m 3 . (gi6 _mry _ y m 3 . ,gi6 =3
(:)u (Rr)B 2a (577 x R (Rr)3 Za (8 x )
y h| : _i Y
+ ? r?s Si . @0 x ah @ - )
R
h| ; -
- él;ﬁg gi d gr x {- ijf . gr + (bJ + Sill + Sjl3) qj}
(R™)
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or

. ' j 3
@i - - Y m gI6 e pr oy m 36 Jr
& (RTy3 98 B8 8 (R5)3 8 B8 T8

k|
+ 3 ym~ SJ6 AJe af (ng(T) AT® a:)

(Rr)3 oB B8 8 op
o] .
3 ym Je r o ,Je(m jf je r J(T) 1T
- (R ) dB aBY Y5 {- IYd A a + (b S&k

Thus, subtracting off the orbital term as described in Appendix C:

: j Iy ~ .
(:)iG _ 3ym pJe ot AJe('l‘) jf Aje it

(Rr)3 aB By “v§8 60 op 0

Y JJée ,ir 3 _ <jé6 ,Je r i(r) ,re _x
(R ) {saB ABG % 3 8 o A88 ag (nc Aop a’)

T de(M G IM gL

313(T))
8k Sk

je h|
3 A qk}

aB By Y8

“+

where

s16 "o 41 4 433

o a a

e TN A By
Siié ) ag(T) gch) Cizas
SRR
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B.3 Derivation of Aerodynamic and Solar Pressure Produced Generalized Forces

This analysis will be restricted to consideration of only a flat
plate configuration. Thus, utilizing Equation (3) of Section 6.2, the

general expression for the force on an element of area dAj is given by
aff = pflcos nd|mIE cos o (_ajf + c3f §f}dAj (B-16)

Therefore, the virtual work done by dfjf acting on an arbitrary element

dAj due to the virtual displacement

sit 4+ o + 689 x & o+ oD

is
swif - f aidf o [srRY + sud + 589 x (& + o))
Aj _ .
where Gﬁl = GRl er
[0} =a
-3 _ J o3 3
Su qu ¢za Za
§89 = 609 I8
[+ ] -Q
Also,
£ _  LIF i jF h| jF 3
W R° SR+ Q° 8q + Q@la 80,
so that

Q wu.
txj
{]
l._h\.
(oW
=1}
[
Fh
10
[> 2o

-a ¢ka

O
= L.
L
1]
u.\
[a N
251
[
rh
(4]
.
(3%
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Q@iF = / aFif . {gig x (D +ad))
3
A

where RiF s QiF and (QGDji are the generalized pressure forces associated

with the generalized coordinates R; , qi and ei respectively.
Thus,
RJF = Pf|cos nJI{HJf cos n3 ejf © et 4 GJf Sf - e} Al
a - -a - ~-a
so that
jF_ 3 pf JyAde(T) o 3f J g
Ra A" P ]cos n lAaB {H cos n BB
(B-17)
jf f
+ G )
e}
where
jf I 3
= B e
= g -8
£ f 3
§ =
g %

In particular then,

RiA = sz Ajlcos ndAi;(T){Z(l - o¥) cos n3 Bg
+ ol - A% ein,
and with
cos nj = gjf §a s
then
cos nj = Bj(T) (- Aje br)
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Therefore,

RjA
o

Also,

gJS
o

where §

cos n’ =

+

- 2,3 ,ir(D) _ g h| (@ ,je .r
pVS A AaB {2 (1 -0 B6 <B(5 AGY bY)

(B-18)
j ,Je .r j() e .r
o) Ay byl |87 Lo bp[
p® Aj|cos nj|Aiz(T)'{2vj cos 1 B%
W je e
(1 - v7) 'ABG SG}
Aje s , so that with (€3 = (&%} (the unit sun vector),
BY Y4 e e e °
Ba AaB SB . Finally then,
s 3 AT 3 j<j<T> je e)
P
AT A {2v B} BB ABY sY (5-19)

. je e (T) e e
(1 - v Ag S,) 1 Lo sp|

Now looking at QiF ’

o

QiF = / ¢iu ej . Pflcos nd{ij cos nJ ng + GJf _5_f]'dA:l

Ad

Since we are working with a flat plate, the following approximation is used:

so that

. 3 . .
b i - A h| h|

A .

h| b I Y,
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Thén,

QiF = @ia Pflcos nj eg it cos nd gjf + gif
and
ja = - 22 3 ] - o3y = [RICT)  de . r
QG pVe A ¢k8{2(1 a’) BB (B6 AGY bY )
J pde [ ryRi(T) ,je .r
+ o0 Ay bs}le AL bp|
and

s _ o8 3 ] J o3 [R3(D) ,je e
Q P° A °ka{2“ By <BB ABY syA>

+ @ - ale sg}lsgm Ag:‘ s

|
58

o}

Now calculating Q(:)iF s

Q@iF = f ggg . (;j + ;.j) X df‘jf

]
o

—a R
AJ
+ cif gf}
so that letting T I - l} .j(. ;j da’ (centroid of plate) ,
A
jF o _ A3 _is . ,=°3 J %3 £ It j _if j£ £
Q(:)a A &y (r 7 + a4 @kg)x P |cos~n [{#’" cos n e"" + G 8"}
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g . / @ o+ ) aad Pf[cos njl{ij cos nJ gjf}

J of L3(T) ,(+°] 233, Lif h| £ 3f 3
A‘ P Gaq {rUY + Hcy}{By H'" cos n’ + SY G }Icos n I .
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" But, transforming from hinge axes to Body j axes,

@F - (¢M)2 @F

so that
@ - At gy v o o) W cosnd 4 6F 6IF)lcos o
Thus,
jA  _ 2,3 %3 . 733 = qdy @ 7RJ(T) de . T
@ = -pv’ 4 (rgg + Hyg) 201 - o) B (B3 Asy bY) (8-22)
j ,je.,r () ,je .r
+ o7 Ay bs}ch Acp bpl
and
is _ 58 3 2% 233 J oI [RI(T) ,Je ,r
@a = P° A (rmB + HaB){Zv By (BG AGY by) (5-23)

- ody ade ey gi(T)  Lde .t
A=V Ag s(s}ln(J A, bp|
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Appendix C. Modification of UFSSP to Simulate The Dynamics
of Rapidly Spinning Flexible Systems

The material for this appendix has been taken from Reference 2 which
contains a more complete description of the modification including test cases.

The equations contained herein are presented in their original form with the

important exception that only first order terms have been coded so that only

the first order correction terms are presented in Equation (4.4).

1.0 INTRODUCTION

The modification described herein extends the capabilities of the program to
provide for the accurate simulation of rapidly spinning flexible spacecraft,
flexible spacecraft having variable angular fates, and the structural
dynamics of helicopter rotors. In general, the modification provides the
capability of simulating the dynamics of rapidly spinning systems of bodies
or systems with variable spin in the configuration of a topological tree
having terminal flexible bodies. To use this special option of UFSSP, the
terminal flexible bodies must be representible as space curves, however,
the program will predict the general bending and torsional motion of the

body including centrifugal stiffening effects.

When a beam--a spacecraft appendage or helicopter rotor for example,
rotates about an axis perpendicular to its own axis, the resulting centri-
fugal forces have the effect of stiffening the blade to a certain degree
thereby increasing the natural frequency of bending vibration of the bean.
Traditionally, this effect has been accounted for by deriving a centrifugal
potential energy term which is added to the elastic energy of the system
or by summing the forces onportions of the beam mass. The present approach
differs in that the approbriate terms are derived from a modified displace-
ment function for the flexible body. That is, the original displacement
fhnction for the body G* is replaced by

- —% 1 du du dr(n) |
= - = QU .oq8e y arin)
u u 2 f (1 (1 ) In dn (1.1)

where r is the position vector of a point on the flexible space curve.
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When used in the derivation of the kinetic energy, Equation (1.1),
yields the approprate terms to account for centrifugal stiffening as well as

for the effects of other components of acceleration.

In the next section, Section 2, the geometry defining the terminal
flexible space curves and their deflections is considered. 1In the following
section, Section 3, the modifications to UFSSP equations of motion are derived.

These results are summarized in Section 4 and the method of their incorporation
in UFSSP 1is outlined.

2.0 GEOMETRY ASSOCLATED WITH DEFORMED SPACE CURVES

In the present version of UFSSP, flexibility is modeled as a
summation of separable functions of displacement and time. That is, the

displacement of an arbitrary point fj in Body j at time t is given by
n

@ e - i: (v ¥ & (2.1)
i=1

The equations of motion as they presently exist include all terms
which arise from spin and other components of éystem motion on the first
order displacement, Ei (r). Therefbre, any additional terms to be included
in the equations of motion must arise from higher order displacements
Flexural shortening is the second order displacement of Body j and therefore
logically must account for the additional terms required. This term arises
because the displacement functioms, 33 , are defined over the entire surface
of Body j and the distance along the deformed curve to a particular point is
greater than the distance along the same path on the undeformed body.
Consequently to insure inextensibility, the deformed shape G*j (;i, t) must be

corrected by an additional term.

The correction term which is derived here is applicable to flexible
bodies in the configuration of a spacecurve, that 1s, one dimensional flexible bodies.
More complex geometries, such as a closed loop or a surface, present additional

difficulties in that the net distance traversed around every closed path
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on the deflected body must be zero. This is a solvable problem whose solufion
mainly depends on the resolution of indexing problems and the establishment

of suitable numerical algorithms. However, it is more complex in the

case of structures of higher dimension than for space curves,

However, restricting the modification to space curves yields results useful

to many practical problems.

Figure 2.1 shows Body j, a flexible space curve, with its
undeformed shape defined by the vector function r(s), where s is the
arc length along the undeformed body measured from the origin. The uncorrected
displaced form of the body is defined by the vector function d(s,t) measured
from the origin (a fixed point) along the deflected structure. The vectors

r and d are related as follows:
- - %
d (s) = r (s) + u (s,t) (2.2)
—%
where u (s,t) is defined in Equation (2.1) and the superscript has been

dropped since it is unimportant to the discussion of this Section to distinguish

Body j from other bodies.

o>
P

Deflected

\ Undeformed

®>

Figure 2.1. Body j, A Flexible Space Curve
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A small distance, As , along the deflected Body j the position

~ vector 1is

- 1 - —%
d(s + 8s) = r (s + As) + u (s + As, t)

An element of arc on the deformed curve is then given by
- ' -
As = d (s + As ) - 4d (s)

or

_t - - _k _ %
As = t(s + 8s) - r(s) + 0 (s + As,t) - u (s,t)
and, in the limit
! dr(s) dG*(S t)
ds = ——2f dg + ——2*= ds

ds ds

L
The length of the arc differential ds 1is

' it dr 4t du . du du')
ds = <E§'E§+2‘a';'z;+£'d—; ds

where it is to be-noted that

dr
ds

dr
Since s is the unit vector tangent to the space curve at s and

- %
dt . du

ds ds

that is, the incremental displacement is normal to the corresponding incre-

mental length of the structure.
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Using Equations (2.8) and (2.9), Equation (2.7) becomes

\J
ds = \/1' +

The quantity -gg ‘%E
1
ds =

—%
du |

ds

—%
du
ds

ds (2.10)

<¢], therefore we use the approximation

&le

1
(r + 3

du
' ds

(2.11)

)

The differential flexural shortening is given by the following vector
', dr(s) 1 du du dr(s)
(ds - ds ) —4s = 2 3s * ds ds s (2.12)
—%
The original displacement function for the body, u (s), may
be replaced by the following function
- -k -m
u (s,t) = u (s,t) + u (s,t) (2.13)
1 & & dm
-m __1 du', du  dr(n
where u (s,t) 3 .4: an | dn dn dn
and n is a dummy arc length variable.
Substitution of Equation (2.1) into the second term of Equation (2.13)
yields
n n
—m . -—
u = E : z : q(t) q (t) F o (2.14)
i=1 k=1
S - - -
- I | déi  dék\) dr
where  Fyp 2 .{ (dn dn )dn an
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3.0 DERIVATION OF THE MODIFICATIONS REQUIRED TO THE UFSSP EQUATIONS OF MOTION

As stated in Equation (2.13) the displacement function for the

-%
flexible body, u (s,t) can be corrected for flexural shortening by adding

%
a term umj (s,t) to u (s,t). The corrected displacement function is

|

j :§ : :;1: J 33
-mj -
where u “(s,t) qi % Fiy
. d=1 k=1

This modified expression for u?

expression for the position of an arbitrary mass point in Body j,

uj (s,t) = G*j(s,t) + ij(s,t)

may now be used to modify the

=3

and subsequently, the kinetic energy expression for Body j.

The instantaneous position vector Ej to an arbitrary point

in Body j may now be written

[ W

—% J—
u 3 + umJ

(-4

where

The velocity vector of an arbitrary field point in the flexible

Body j is found from Equation (3.2) to be

dpJd ir 21 -r -
——— e R
dt
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Some terms in Equation (3.3) are constant over Body j, it will

simplify the process of evaluation of the kinetic energy integral to group

A
these in one term. Redefine %%— as

"j _ s _ s . _ -
%%— = le + wj x i+ uj + wj X uj

where e LS - VRN -+ SR o N . SR (3.4)

Substituting the expression for Gj , Equation (3.1), into

Equation (3.3) we obtain

- *j .
dp - de -mj -j -mj
q ac + u + w X u (3.5)
where
* .
IR E Rt BT RS- BRP B
- = X + W X T + u + w X u s
dt
=]

the previous definition of %%— .

The square of the velocity of an arbitrary point in Body j

is then
-3 - —% —% —%
dp? el _ o, , ), im
dt dt dt dt _ dt
. d_*j " .
+ 2 E% © (w? ox umj) + o™ . g

+2 ™M@ ™)+ @ ox @«
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The last three terms in Equation (3.6) are fourth order in q , & and
- will thus lead to third order terms in the equations of motion. Consequently, these
terms may be neglected from this point. Using Equation (3.6), the kinetic

energy of Body j may be written as follows:

T=_];f fi_é-...ééj dmj

2 dt dt
Bj .
* et d-* =3 _ -mj j
= T + f ?1% . umj dmj + E% © (w % w™) dm’ (3.7)
Bj Bj

Substituting the second of Equations (3.5) into Equation (3.7),
we obtain an expression for the kinetic energy which is the sum of eight

integrals:
€ @

. * - L o. - - —_ >
T = T + le . f umJ de + le -(mj X f umJ de>

Sj Bj
) . &8
+ @ ox ) W™ el 4 f o g™ gl
3 3
+ @aah Mad [ @) @ T
B ]
h| A
: €
+ f G*j . (Bj X GmJ) clmj + / (5‘] X E*j) * ((T)j X Gm‘]) dm? (3.8)
B B
] 3

*
where T is the previous expression for the kinetic energy.

From Equation (3.1) we have

—mj 2: J 3 %]
u = 97 9% Fik (3.9)
i,k
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Consequently,

-mj ., 3 _ 3 2: I 35
4 u ¥ dm m qy 9 F (le (3.10)
h| i,k
where f‘j = 1 Fj dmj is a new special mass property.
(1)ik h| ik
This quantity may n also be used to define the integral

f o »dmj = 2 md Z 3 7 (3.11)

qi 9% Fliyik
J i,iz

We may now evaluate the kinetic energy term by term.

- j =it . J 23 =3
tl = 2w X E 93 9 F(l)lk (3.12)
i,k
(2 = md @?T -(53 % Z qi qi j(l)ik) (3.13)
i,k
t3 = f (w” x rj) ‘ umj dmj
B3
S [ Z qi qa Z?i (3.14)
i,k ‘

where 2‘“1:1 = -2—' f ;j X Fik dm:I

i o Bj

The terms ¢t4 and t5 will result in second order contributions

to the equations of motion, consequently these are neglected.

t6 = f Gl xth @ x ™) and
8 |
- Z q o B} -3 (3.15)
ik
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where
S B pobt BV IS St B 3
Ep 3 f ( (r Fk2)6 r sz) dm
m B
3
and § is the Kronecker delta.
The remaining terms t7 and t8 are second order.

The previous results may be combined to write the kinetic energy

for Body j as follows:

where

- ¥ -3 (.3 J Zm]
Ty T+ w e m a af 7%

T, = mox 3 9 qk (l)ik
i

»

ot J 33
et ox Z:qi qu(l)lkz

*
. The terms in 'I.‘l are of the same form as certain terms in T |,

*
that is, in T we have the terms

. .. . _ ) e
7w (Z qi % Eik) e <“‘J Z qk. ik) (3-17)

i,k i,k

=

Thus, the terms in Tl can be accounted for in the original equations

of motion by redefining Eik and Zik as follows:
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= =% : =mj
ik ik ik

A .
zik = zik + Zik (3.18)
=-,’:j _*j =j —j R .
where E, and Z, replace E and Z as they are originally defined
ik =mj ik -mj ik ik
and E s and 2 , are modifications that must be added to

ik ik
these to correct for flexural shortening.

The terms contributed by T2 to the equations of motion
are established- by means of Lagrange's Equations.

4.0 ° SUMMARY OF FORMULATION RESULTS AND APPROACH TO INCORPORATION IN UFSSP

4,1 Summary of the Equations of Motion

The modified equations of motion are as follows:

The qi Equation

3T 3T
d_(ﬂ-‘_)_ T g_(—i)- —
ac | -1 1 dt \ aq 3q
3qk qu k k
' .32 4r st . 3 42,31 i et
+ 2 F -
. ( n ka Aay _RY, 2 m‘ Fka Aay lyo Wy
3 pi2 g de e 37 | ‘ ' .
t2m : Fka CAay‘ Ry + ‘Sa )- : - (4.1)
where sz = 3 Fj
’ ko 9e *(1)tka
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The Ri Equation

9.(32.)- AT _ _d_(f_T.l_)_ T
dt L5 i dt of i
) aRaz BRG o 3Ra

| 39t 3 ., 12D i g3l
* 3'“_ b T v 2 P % By ¥
~ jS ~j ,~j Fjl
+ bug ET Y uwpy W B
jl _ 3 ;32
where Fa 9 Fka
3 _ -3 -3 L] 3
’’ - 24 & 4 F)ika
16 _ .3 .32
Fa» qk Fka
1 -
The 9A Equation
d_(-a__r )_‘ T _ 4 _"Tl)_ m
dt \ .21 i dt i i
36y 28} 26} 20,
“j1 . je r jropio i i oei L 37
owl B (L R+ AL R Ay g 9 529

The above relations will now be used to redefine the elements
of the B matrix and C matrix defined by Equations (5-35) to (5-49).

*
0ld expressions for the sub-matrices will be designated by a superscript .

(Note: only first-order correction terms are included here.)
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All

kg

Al2

By

Al3
kB8

Al4

A22
By

A23
68

A24

*
All
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: * 3 _ '
g3l _ A3l Z 2 ol Aj;('l‘) F12(1)
. a .

af af BL
=1 ’
A2 an’
= B
ay ay
*
gA33 | A3
afB af
gh34 BA.34*
af aB
%*
CA3 - CAa
o (¢ 3

Various quantities used in-Equation (4.4) are auxiliary quantities
which are calculated at each time step. These quantities are generally
expressible in terms of the special mass properties. In the following, the
calculation of the special mass properties is clarified. .

4.2 New Special Mass Properties Required

The UFSS Program has been modified to include additional terms
for a terminal body which is flexible and in the configuration of a space
curve. Any space curve may be approximated by a sequence of interconnected
points, and consequently, the most logical representation bf a space curve
is in terms of a series of interconnected nodal points. All of the modifi-
cations to the special mass properties are derived in terms of such a model.
However, it may be desired to model a structure having significant lateral

dimensions as shown in Figure 4.1 which requires several rows of nodes.
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1
5 @ - .- o> - - - —e
10 15 20 25 30 35 40
4L ® ——@ —— ® o~ - —
9 14 19 24 29 34 39
3 * - - - ————o- —e —> N
8 13 18 23 28 33 38 2
2 @ - -® * —o- g - —®
7 12 17 22 27 32 37
le > - - @ & L4
6 11 16 21 26 31 36

Figure 4.1. A Flexible Body Represented by
Several Rows of Nodes

The quantities associated with ‘the rows of nodes defining a structure
such as the structure of Figure 4.1 must be used to define the properties of

the system represented by a single row of nodas as shown in Figure 4.2

Figure 4.2. Nodal Numbering Scheme Admissable
to the Analysis
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The quantities associated with the structure of Figure 4.1 will

be designated as follows:

*

Amlj = the mass lumped at the &th node of Body j

*§ .
X4 = the oth coordinate (a=1,2,3) of node &% in Body j
—%j .
¢a2k = the ath component of mode k at node &%

* %
m = the total number of nodes (m, < 64)

3 3

These quantities are all input to the program in its origimal form, but the
user i1s now = constrained to number the nodes as shown in Figure 4.1. These
quantities must be used to obt?in equivalent properties for a space curve

as shown in Figure 4.2. One additional input is required, the number of rows
of nodes, however this can be accounted for by reinterpretation of the signi-
ficance of the input.flag designating whether a body is rigid or flexible.

Thus, let £, equal the number of rows of nodes, then the mass lumped at the

]
ith‘ node in the space déurve is given by
£, 1
J - *3
Ami Amg
EENCRORS R T
*
where m, = m,/f,
J J 1

Thus, for example, for the structure shown in Figure 4.2 we obtain

the mass at the third node from the nodal masses of the structure in Figure 4.1

as follows:
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5(3)
Amg =
g =

The coordinates of the nodes and the components of the modes of
the representation shown in Figure 4.2 will be assumed to be those associlated
with the center row of nodes in the structure of Figure 4.1.

fj must always be an odd number. The number of the node in the representation

of Figure 4.1, node & , which corresponds to node i
Figure 4.2 is found from
= Y (f 1 - £, + 1)
2 h| 3
For example, for fj = 5,and 1 = 3 we obtain
1
L = 5-(2(5)3 - 5 + 1) = 13

The modes and coordinates of at node i in the representation shown

in Figure 4.2 are found as follows:

i o2 %

batk = Palk

where & = %-(ij i - fj + 1) and
b I |
Xai Xal

Preliminary to defining the modifications to the special mass

properties, the following quantities will be required, none of which are

output.

181

*
Am 3

L

5(3-1) +1
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Consequently,
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ard. = W3 -3 e« =1,2,3

ol ai a,i-1
1 =2,3,...m
J
b IO |
Aral - xal
3 1/2
i j\2
L = ( Z (Arqy) )
: a=1

and a vector is defined at each node, h , for modes k and 2 ,

h
3
21 1 ] _ a3 h| _ 4] '
2 Z L) )2 E (s %ok, k-1 ($5ey %3e,1-17  (4.9)
)

]

Component 8

mode k

node i h=1,2... , m

The following quantities will be calculated. The first, F%l)kz
is a special mass property which arises in base motion terms, while the second
and third are terms which add to the existing special mass property terms.
These additional special mass properties can be expressed in terms of
integrals which take the same form as other existing special mass property

integrals.

The special mass property F%l)kz is defined as follows:

W =;1‘? f 1 dmd (4.10)

(L)ke k&
By

This integral is replaced by a summation over the configuration of Figure 4.2,
specifically by a summation over the £ nodes defined by (4.6).
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Except for the dual subscripting, the special mass property, F(l)kl s
defined in (4.10) is in exactly the same form as the integral defining 5%

in Equatioq (A-3),

The second special mass property to be defined, 2:% , is a

modification to be added to an existing special mass property, Ziz
ZEi is defined as follows:

>y _ 2 73 %3 3
ZkZ 3 f r’ x sz dm
m
B,
J
This expression, except for the dual subscripting is in exactly

the same form as the expression for the existing special mass property

¥9 defined in Equation (A-4).

The remaining special mass property, Eti , 1s a modification
to be added to an existing speclal mass property, ' Eik . Ezi is

.defined as follows:

-mj 2 023 .5y _ =3 s j
EkIL = 3 f ( § (r F’kl) r Fk2>dm
m Bj _

This expression, except for dual subscripting, is'in exactly the
same form as the expression for the existing special mass property ﬁ% de-

fined in Equation (A-7),
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Appendix D. Modification of UFSSP to Calcuiate Dynamic Loads

This appendix describes the methodology involved in calculating dynamic
loads within the UFSS program. Determination of these loads can be divided
into two basic phases. In the first phase, forces and moments acting at
each interconnection between adjacent bodies are calculated within the UFSS
program via information available from the original dynamics subrdutines.

In the second phase, the mode-acceleration method is utilized to calculate
internal loads at any desired node point within a given terminal flexible
body. These internal loads are calculated by a separate, stand—alone
program operating upon a special loads history tape generated by the UFSS

program.

D.1 Interconnection Force and Torque Calculations

The synthesizing algorithm within UFSSP is based on elimination of the

interaction forces and torques between adjacent bodies of the system model.

.By so doing, the final system of matrix differential equations includes

only the unconstrained degrees of freedom of the spacecraft model. This
retention of only the minimal number of degrees of freedom contributes
greatly to reducing the cost of the solution for the dynamic response.
However, when the dynamic loads are desired, the interaction forces and
torques must be obtained explicitly. Specifically, they are calculated

from the linear and angular velocities and accelerations and the coordinate
transformations associated with the individual bodies of the spacecraft model
by following the same sequencing algorithm used to synthesize the dynamic

equations of motion.

D.1.1 Interconnection Loads for a Flexible Body

If Body j is a flexibie body (with limb Body i), its interconnection
forces and torques can readily be determined using the equations from Appendix
A. Specifically, from Equation (A-9):

pii _ Air A3 A31 A32 T A33 .i A34 i

a

h|
-c>7 + B + . -
18 17Ca +Bgy gt Bg 6y ¥ Bgg g+ By R (D-1)
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Similarly, from Equation (A-12):

A2 + BA21 qj + BA22 6J + BA23 é + BA24 R

o ol L ay aB aB g* (p-2)

Tji = ~C

a
The coefficient matrices in the above equations are available 1mmed1ately fol-
lowing the flexible load operation for'BodyJ. The quantities qi and BJ are
elements of the dynamic derivative vector depicted as {X} = {a} in Figure 8 1
on(page 90; thus, they are available immediately follow1ng a call to the deriv-
ative subroutine of the master program. The quantities mz and RB are not
available for any bodies other than for Body 1; consequently, their explicit

calculation must be added to the program. From Equation (A-5):

- o_ 431 i j+ 03 j5 (p-3)
wg ABa W, + GBY GY + SB .

In a similar manner, Equation (A-32) ean be rewritten to produce

s i2 i _ .32 id i1 13 ir(r) ,i3 _
Ra R + L ay QY LGY lY + LaY ZY + AdY y ? (D-4)
where .

j1 _ ,3r(T) ~ j = r  Jr(T)
L = A w - W A

ay aB By aB By - @ . (D-5)
j2 _ .31 ° J _ T jl + Jr(r) :j _ .r ,3r(T

L“Y LaB By wae By AaB mBY waB ABY .

Thus, &g and ig are computed recursively and can be considered as an addition
to the rigid auxiliary calculations.

The above calculations for TJi and Fj are performed only at those time
points called out for printing and/or plotting since the computations are only

necessary for output.

- D.1.2 Interconnection ioads fér a Rigid Body

If Body j is a rigid body (with limb Body i),the interconnection forces
and torques at its limb connection can also be determined using the equations
from Appendix A. Specifically, from Equation (A-30) and the relationship-
Wis = ng, immediately preceeding Equation (A-33):

ji_ A3 A3l is , -A32 .j . A33 i )
Pt e 0Bt 610 e B T g + B Ryl (D-6)
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Similarly, from Equations (A-30) and (A-37):

ji _ > 3% _ji _ A2 | A2l ©§5 | _A22 «j  _A23 -j _
Ti. 20!-3 Fﬁ’ Cot + qu 62‘ + BuB‘ ws + B(!B _RB . (D-7)

The coefficient matrices in the above equations are available immediately fol-
lowing the rigid load operation for Body j. The quantities 09° are elements of
the dynamic derivative vector, while ég and Rg are as given by Equations (D-3)
and (D-4) with the single change of Pgl7 reﬁlacing Sgs in (D-3).

As in the previous case of a flexible body, the above calculations for

Tgi and ngare perfermed only at those time points called out for printing
and/or plotting.

D.2 Internal Load Calculations

In the UFSS program, flexible bodies are modeled in the traditional struc-
tural dynamics sense as a system of joints (or nodes) which are interconnected
by weightless finite element members (e.g., beams, plates...). All masses are
lumped at the joints. The orthogonal functions used to describe the spatial
deformation of the bodies are normally taken to be the orthonormal modes pro-
duced by a standard structural dynamics program such as NASTRAN, SAMIS, or SMAP.
In general, most such programs are based on small deflection theory, using the
direct stiffness matrix finite element approach assuming linear stiffnesses.
Such an approach_allows for the generation of a specific transformation matrix,
herein called the load transformation matrix (LTM), by a systematic application
of unit forces along each degree of freedom with all other forces set equal to
zero. In particular, such a matrix allows internal member forces to be calcu-
lated through the simple matrix multiplicétion operaton

Ly (t) =B _F (v). (D-8)
MQ Q

In the above equation, each component pf Pﬁ(t) represents a specific desired
internal member load, BMQ is the LTM and Fb(t) is the applied force vector.
Specifically, BMQ contains, as rows, coefficients for each degree of freedom
relating the desired load to a unit force applied successively along each degree

of freedom of the structure (assumed to be three times the number of joints in
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UFSSP since only the modal translations are used to describe deformations),
and the ordering of the columns must be identical to the degree of freedom
ordering within the mode shapes. The applied force vector, FO(t)’ contains
both the externally applied forces (environmental forces, control forces...)
and the inertial (d'Alembert) forces associated with the inertial velocity and

acceleration of each joint.

Since the LTM is generated as a static problem with no relatiomship to
the joint masses, the following development is intended to show how the iner-
tial forces enter the calculations and exactly what model is to be used for

generating the LTM.

D.2.1 Basic Concepts

Consider an arbitrarily moving flexible body, B, modeled in the tradi-
tional structural dynamics fashion as a system of N discrete joints, each
having lumped mass " (n = 1; ...; N), with massless finite elements (beams,
plates...) connecting the joints. As shown in Figure D.1, let gu (o0 = 1,2,3)
be unit vectors defining a right-handed, rectangular Cartesian reference frame
fixed in the undeformed body (i.e., deformations of B are measured relative to
to the gu frame). Let the origin of gu be denoted by 0, and let the external
forces acting at 0 be denoted by F°. ‘Let a” be the inertial acceleration of
joint n, and let F" be the total external force acting on joint n. The gov-

erning equations of motion for joint n are as follows:

Figure D.1 - Schematic of a Flexible Body B
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: K -
At = e 2 gk, (D-9)
k=1

-nk .
where g is the force exerted on joint n by the kth structural element (here,
K is the total number of structural elements and, obviously, énk=0 if element k

does not connect to joint n).

Summing over the entire body B:

N n -n N _ K Kk
2: m a = 2: Fn + z: gn + fo
n=1 n=1 k=1

(note, if 0 is located at joint n of B; then conventionally FN = 0, as its

contribution is expressed in Fo)

But, :
N [ K K N
Tl e ] -2 | X g
n=1 \ k=1 k=1 \n=1

and, since the elements are massless,

N
_Zg“kzo.
n=1.
Therefore,
N : N n o
.z: ot 3P - 2: F + F
n=1 =1
or

=]
1
=]
e
+
)
[¢]
il
o

(D-10)

N - - :
2: .{F - m
_ n=1
af each instant of time.

Consider the same flexible body, B, rigidly cantilevered at 0, as
shown in Figure D.2. Let £" be the constant external force applied at joint

n. Then, the static force equilibrium equations for B are as follows:

n=1

where f° is the reaction force vector acting on B at the cantilever point 0.
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Figure D.2 - System B Cantilevered at O

If, at any instant of time t, one now sets

= FiNe) - o 3%, (D-11)

then, necessarily,
P =P
and the internal loads within the cantilevered body shown in Figure D.2 are

identical to those within the free body shown in Figure D.1 at time t.

One now génerates the LTM for the system shown in ngure D.2 by success-
ively applying a unit force along each translational degree_of freedom with all
other forces set equal to zero. Havihg 6btained the LTM (BdB)’ one determines
the desired internal loads within the system of Figure D.1 at any time t as
being equal to those preéent in the system of Figure D.2 when the force distri-
bution (D-11) is applied. Specifically, the internal loads FM(t) are determined

as

Ly (8) = By Fo(0), e

where FQ(t)'is a 3N-vector, with componenté

1

f1

1

. fz

F,(t) = )

Q( ) .

N

Af3
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with f:rbging the component along the EY axis of the force distribution given
by (D-11). ' R : <

D.2.2 Internal Loads Program

Because of the core storage required to save the LTM and the fact that
internal load calculations can be performed subsequent to the dynamic simulation
of a given system, it is adyisabie that.a separate progam "LQADS" be generated
to calculate the internal loads withina given flexible body.- Figure D.3 presents
an overview of the program interfaces. As seen'fromtEquation (Df12), only two
basic quantities are required for the loads computation. The first quantity,
BNQ' is obtained from a structural,dynamics program; the second quantity, Fq(t),

is obtained from the UFSS program via a special history tape.

As previously mentioned, the row index, M, of BMQ runs from one to A,
where A is the total number of internal loads to be calculated; the column
index, @, runs from one to 3N, where N is the total number of joints in the
structural dynamics model of the given flexible body, as input to UFSSP. Addi-

tional description of the LTM is contained in the user manual for the L@AD

program referenced under ''Associated Documentation' on page of this document.
Structures
UFSSP Program
History
Tape BMQ
; LPAD -
Program

'

Internal Loads

Figure D.3. Basic Interfaces for Internal Load Calculations
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Thus, given Equation (D-12), it only remains to prescribe the
computation of F (t); considering Equation (D-11), the problem is further

reduced to determlnation of EO. Let us first determine a (t)

Differentiating Equation (A-2), one finds that for Body j:

Ejn = 3R + Ri + 2(? X Ri) (;r X ﬁf)
‘+ ar x(:u_)r X ﬁi) + ii X j +w ot X (51 X Ei'>
+ 284 2(5i X iif)z
+ x( jn+ujr;) + an + ZBj X uj +w x [9 x(fjn -jn)}

or, specifically identifying that part of ;jn

UL Rt (Ej“ + Gjn> + oi®
+ ZGj X éjn + wj p.4 [mj X (—jn + an)}
where

-B4 = - -1 = -1 ) -
ABJ = Ri + 2(?r X Rl) +<ér x R ) + wr x(:ur b4 Rf)

+ol 42t ot (al X EiJ> + ety z(;,i x zii) )

which is joint independent.

In the above expression for KBj , note the absence of the.term'ir . As in
thé case of the derivation of the basic dynamic equations in Appendik A
(see, for example, the discussion leading'to Equation (A-7)...), the d'Alembert
 force acting on Body j, if Body j were located at the origin of the reference |
frame, has been removed from the accelera;ion term by equating it to the

corresponding gravitational force as reflected later in Equation (D-15).

Finally, in component form,

ajn =,ABj'+ ﬁjn +2 gj _&jﬂ
o 1 e af 8

: ‘ (D-13) .
9 (n n\ v g fgn g
* Yap (t.B g ) ¥ Uap ss( B "V )
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Whére

40 _ 3 ,dn
Wg = qy 43
Sjn _ -3 in
We =9 ¢34
-.jn'— uj jn .
We' = qp 8

The external forces acting on joint n (?jn) will presently include gravita-
tional forces and control thfuster_forces. (Geomagnetic, solarvpreésure and
aerodynamic pressure forces as well as control torquers can be added at any
time if a Speéific application calls for their inclusion.) From Equation '

- (8-16), the control thruster force components at joint n are given by

anC jr. jnT
= A . . D-14
8 X | ( )
From Equation (Bfll) and the fact that gf has components —Aig in the g%
frame and components { 0 0 -1 } in the g; frame, the gravity force components

at joint n are given by

NG _ _ym i j + (rj“ + wdn)
a ' (Rr)3 of 8 )
in (1) _ {®-15)
PR Rﬁ +a3T n el [AIT
r,3 3a o a a3
) '
' | ni® B
(Note absencé of the term‘—x————g— which has been equated to the term
mj RY arising from A Bj as prévigusly noted.)
Finally, the external force acting on joint n is given by
Fi“ = Fi“c + Fi“c (D-16)

and the total applied force components making up FQ(t) for use in

Equation (D-12) are given by

PR L, L ' (D-17)
a a a _

with Ein and ain as given by Equations (D-16) and (D-13) respectively.
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